Bone formation during forelimb regeneration: A microtomography (microCT) analysis

In our study of bone regeneration in the forelimbs of mature newts (Notophthalmus viridescens), we used noninvasive X‐ray microtomography (microCT) to image regenerating limbs from 37 to 85 days and matching (contralateral) controls. We compared the patterns of regenerated and existing (nonregenerated) bone, investigating in particular the onset of mineralization of specific bones, the level of mineral present, and the lengths of the different bones. Overall, we find that the missing limb skeletal elements are restored in a proximal‐to‐distal direction, which reiterates the developmental patterning program. However, in contrast to this proximal–distal sequence, the portion of the humerus distal to the amputation site fails to ossify in synchrony with the regenerating radius and ulna. This finding suggests that the replacement of cartilage with mineralized bone close to the amputation site is delayed with respect to other regenerating skeletal elements. Developmental Dynamics 226:410–417, 2003. © 2003 Wiley‐Liss, Inc.

[1]  J. Kinney,et al.  In vivo, three‐dimensional microscopy of trabecular bone , 1995, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[2]  Richard J. Goss,et al.  Chondrogenesis in Regenerating Systems , 1983 .

[3]  Richard M. Libbin,et al.  A prolonged cartilaginous phase in newt forelimb skeletal regeneration , 1988 .

[4]  L Wolpert,et al.  A quantitative study of blastemal growth and bone regression during limb regeneration in Triturus cristatus. , 1974, Journal of embryology and experimental morphology.

[5]  S. Stock,et al.  X-ray absorption microtomography (microCT) and small beam diffraction mapping of sea urchin teeth. , 2002, Journal of structural biology.

[6]  Arthur Veis,et al.  Mineral‐related proteins of sea urchin teeth: Lytechinus variegatus , 2002, Microscopy research and technique.

[7]  J. Kinney,et al.  Pore geometry in woven fiber structures: 0°/90° plain-weave cloth layup preform , 1998 .

[8]  S. Majumdar,et al.  Noninvasive Assessment of Trabecular Bone Architecture and the Competence of Bone , 2012, Advances in Experimental Medicine and Biology.

[9]  P Rüegsegger,et al.  In vivo micro tomography. , 2001, Advances in experimental medicine and biology.

[10]  S. R. Stock,et al.  X-ray microtomography of materials , 1999 .

[11]  J. Brockes,et al.  Amphibian Limb Regeneration: Rebuilding a Complex Structure , 1997, Science.

[12]  C. Tabin,et al.  Analysis of Hox-4.5 and Hox-3.6 expression during newt limb regeneration: differential regulation of paralogous Hox genes suggest different roles for members of different Hox clusters. , 1993, Development.

[13]  P. Alberch,et al.  A morphogenetic approach to the origin and basic organization of the tetrapod limb , 1986 .

[14]  David B. Wake,et al.  Limb development in the Pacific giant salamanders, Dicamptodon (Amphibia, Caudata, Dicamptodontidae) , 1998 .

[15]  M M Benzo,et al.  Morphogenesis of the carpal elements in the regenerating forelimb of adult Notophthalmus viridescens viridescens , 1975, The Anatomical record.

[16]  Donald Thomas Chalkley,et al.  A quantitative histological analysis of forelimb regeneration in triturus viridescens , 1954 .

[17]  Kurt Erdmann,et al.  Zur Entwicklung des knöchernen Skelets von Triton und Rana unter besonderer Berücksichtigung der Zeitfolge der Ossifikationen , 1933, Zeitschrift für Anatomie und Entwicklungsgeschichte.

[18]  Hans-Georg Simon,et al.  Different regulation of T-box genes Tbx4 and Tbx5 during limb development and limb regeneration. , 2002, Developmental biology.

[19]  Richard M. Libbin,et al.  Delayed carpal ossification in N. viridescens efts: Relation to the progress of mesopodial completion in newt forelimb regenerates , 1989 .

[20]  S. Stock,et al.  X-ray microCT study of pyramids of the sea urchin Lytechinus variegatus. , 2003, Journal of structural biology.

[21]  H QUASTLER,et al.  Regeneration of x-rayed salamander limbs provided with normal epidermis. , 1955, Science.

[22]  H Wallace,et al.  Participation of cartilage grafts in amphibian limb regeneration. , 1974, Journal of embryology and experimental morphology.

[23]  V. V. Brunst,et al.  Influence of X-Rays on Limb Regeneration in Urodele Amphibians , 1950, The Quarterly Review of Biology.

[24]  M. Balooch,et al.  Three‐Dimensional Morphometry of the L6 Vertebra in the Ovariectomized Rat Model of Osteoporosis: Biomechanical Implications , 2000, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[25]  Susan V. Bryant,et al.  Forelimb regeneration from different levels of amputation in the newt,Notophthalmus viridescens: Length, rate, and stages , 1973, Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen.

[26]  Stuart R. Stock,et al.  X-ray microtomography of fatigue crack closure as a function of applied load in Al-Li 2090 T8E41 samples , 1999 .

[27]  M. C. Nichols,et al.  X-ray Tomographic Study of Chemical Vapor Infiltration Processing of Ceramic Composites , 1993, Science.

[28]  S. Bryant,et al.  Expression of Hoxb13 and Hoxc10 in developing and regenerating Axolotl limbs and tails. , 2001, Developmental biology.

[29]  P. Tsonis Regenerative biology: the emerging field of tissue repair and restoration. , 2002, Differentiation; research in biological diversity.

[30]  E. Smirina Age determination and longevity in amphibians. , 1994, Gerontology.

[31]  D B Kimmel,et al.  Acute Changes in Trabecular Bone Connectivity and Osteoclast Activity in the Ovariectomized Rat In Vivo , 1998, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[32]  D. Stocum Regenerative biology: a millenial revolution. , 1999, Seminars in cell & developmental biology.

[33]  Stuart R. Stock,et al.  Direct observation of crack opening as a function of applied load in the interior of a notched tensile sample of AlLi 2090 , 1997 .

[34]  Anoop Kumar,et al.  Plasticity and reprogramming of differentiated cells in amphibian regeneration , 2002, Nature Reviews Molecular Cell Biology.