Time Curves: Folding Time to Visualize Patterns of Temporal Evolution in Data

We introduce time curves as a general approach for visualizing patterns of evolution in temporal data. Examples of such patterns include slow and regular progressions, large sudden changes, and reversals to previous states. These patterns can be of interest in a range of domains, such as collaborative document editing, dynamic network analysis, and video analysis. Time curves employ the metaphor of folding a timeline visualization into itself so as to bring similar time points close to each other. This metaphor can be applied to any dataset where a similarity metric between temporal snapshots can be defined, thus it is largely datatype-agnostic. We illustrate how time curves can visually reveal informative patterns in a range of different datasets.

[1]  Tobias Isenberg,et al.  Weighted graph comparison techniques for brain connectivity analysis , 2013, CHI.

[2]  Willi-Hans Steeb,et al.  Mathematical tools in computer graphics with C# implementations , 2008 .

[3]  Mario Vento,et al.  Thirty Years Of Graph Matching In Pattern Recognition , 2004, Int. J. Pattern Recognit. Artif. Intell..

[4]  Carlos Eduardo Scheidegger,et al.  An Algebraic Process for Visualization Design , 2014, IEEE Transactions on Visualization and Computer Graphics.

[5]  Jonathan Foote,et al.  Visualizing music and audio using self-similarity , 1999, MULTIMEDIA '99.

[6]  Philippe Castagliola,et al.  A Comparison of the Readability of Graphs Using Node-Link and Matrix-Based Representations , 2004 .

[7]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[8]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[9]  James H. Martin,et al.  Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition, 2nd Edition , 2000, Prentice Hall series in artificial intelligence.

[10]  Alan J. Dix,et al.  A Taxonomy of Clutter Reduction for Information Visualisation , 2007, IEEE Transactions on Visualization and Computer Graphics.

[11]  Pierre Dragicevic,et al.  Video browsing by direct manipulation , 2008, CHI.

[12]  Peter J. Stuckey,et al.  Fast Node Overlap Removal - Correction , 2006, GD.

[13]  Ramón Huerta,et al.  Transient Cognitive Dynamics, Metastability, and Decision Making , 2008, PLoS Comput. Biol..

[14]  Rainer Lienhart,et al.  Comparison of automatic shot boundary detection algorithms , 1998, Electronic Imaging.

[15]  Mary Czerwinski,et al.  Design Study of LineSets, a Novel Set Visualization Technique , 2011, IEEE Transactions on Visualization and Computer Graphics.

[16]  Martin Wattenberg,et al.  Arc diagrams: visualizing structure in strings , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[17]  Andreas A Ioannides,et al.  Dynamic functional connectivity , 2007, Current Opinion in Neurobiology.

[18]  Martin Wattenberg,et al.  Studying cooperation and conflict between authors with history flow visualizations , 2004, CHI.

[19]  M. Sheelagh T. Carpendale,et al.  A Review of Temporal Data Visualizations Based on Space-Time Cube Operations , 2014, EuroVis.

[20]  P. Sánchez,et al.  VISUALIZATION METHODS FOR TIME-DEPENDENT DATA-AN OVERVIEW , 2003 .

[21]  Y. Takane,et al.  Multidimensional Scaling I , 2015 .

[22]  Jean-Daniel Fekete,et al.  WikipediaViz: Conveying article quality for casual Wikipedia readers , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).

[23]  David A. Leopold,et al.  Dynamic functional connectivity: Promise, issues, and interpretations , 2013, NeuroImage.

[24]  N. Jaworska,et al.  A Review of Multidimensional Scaling (MDS) and its Utility in Various Psychological Domains , 2009 .

[25]  Pierre Dragicevic,et al.  GraphDice: A System for Exploring Multivariate Social Networks , 2010, Comput. Graph. Forum.

[26]  Charles Perin,et al.  SoccerStories: A Kick-off for Visual Soccer Analysis , 2013, IEEE Transactions on Visualization and Computer Graphics.

[27]  Ben Shneiderman,et al.  Why Not Make Interfaces Better than 3D Reality? , 2003, IEEE Computer Graphics and Applications.

[28]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[29]  Thomas J. Grabowski,et al.  Dynamic Connectivity at Rest Predicts Attention Task Performance , 2015, Brain Connect..

[30]  Michael C. Hout,et al.  Multidimensional Scaling , 2003, Encyclopedic Dictionary of Archaeology.

[31]  Heidrun Schumann,et al.  Visualization of Time-Oriented Data , 2011, Human-Computer Interaction Series.

[32]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. II , 1962 .

[33]  Silvia Miksch,et al.  Gravi++: Interactive Information Visualization to Explore Highly Structured Temporal Data , 2005, J. Univers. Comput. Sci..

[34]  Min Chen,et al.  State of the Art Report on Video‐Based Graphics and Video Visualization , 2012, Comput. Graph. Forum.

[35]  Ying Liu,et al.  A survey of content-based image retrieval with high-level semantics , 2007, Pattern Recognit..

[36]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. I. , 1962 .

[37]  Timothy O. Laumann,et al.  Methods to detect, characterize, and remove motion artifact in resting state fMRI , 2014, NeuroImage.

[38]  Pierre Dragicevic,et al.  Interactive graph matching and visual comparison of graphs and clustered graphs , 2012, AVI.

[39]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[40]  Jean-Daniel Fekete,et al.  Small MultiPiles: Piling Time to Explore Temporal Patterns in Dynamic Networks , 2015, Comput. Graph. Forum.

[41]  Bettina Speckmann,et al.  Travel-Time Maps: Linear Cartograms with Fixed Vertex Locations , 2014, GIScience.

[42]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[43]  Stefan Schmid,et al.  Modeling and measuring graph similarity: the case for centrality distance , 2014, FOMC '14.

[44]  Robert Pless,et al.  Image spaces and video trajectories: using Isomap to explore video sequences , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[45]  T. Munzner,et al.  Dimensionality Reduction in the Wild : Gaps and Guidance , 2012 .

[46]  Bin Ma,et al.  The similarity metric , 2001, IEEE Transactions on Information Theory.

[47]  W. Torgerson Multidimensional scaling: I. Theory and method , 1952 .

[48]  Chris North,et al.  Analytic provenance: process+interaction+insight , 2011, CHI Extended Abstracts.

[49]  Pierre Dragicevic,et al.  Using text animated transitions to support navigation in document histories , 2010, CHI.

[50]  Wen-Ming Luh,et al.  Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI , 2012, NeuroImage.