Spectrin properties and the elasticity of the red blood cell membrane skeleton.

Two models of spectrin elasticity are developed and compared to experimental measurements of the red blood cell (RBC) membrane shear modulus through the use of an elastic finite element model of the RBC membrane skeleton. The two molecular models of spectrin are: (i) An entropic spring model of spectrin as a flexible chain. This is a model proposed by several previous authors. (ii) An elastic model of a helical coiled-coil which expands by increasing helical pitch. In previous papers, we have computed the relationship between the stiffness of a single spectrin molecule (K) and the shear modulus of a network (mu), and have shown that this behavior is strongly dependent upon network topology. For realistic network models of the RBC membrane skeleton, we equate mu to micropipette measurements of RBCs and predict K for spectrin that is consistent with the coiled-coli molecular model. The value of spectrin stiffness derived from the entropic molecular model would need to be at least 30 times greater to match the experimental results. Thus, the conclusion of this study is that a helical coiled-coil model for spectrin is more realistic than a purely entropic model.

[1]  L. Kunkel,et al.  Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility. , 1990, The Journal of biological chemistry.

[2]  M. Prabhakaran,et al.  Secondary structure prediction for the spectrin 106-amino acid segment, and a proposed model for tertiary structure. , 1990, Journal of biomolecular structure & dynamics.

[3]  H. Ueda,et al.  Membrane skeleton in fresh unfixed erythrocytes as revealed by a rapid-freezing and deep-etching method. , 1994, Journal of anatomy.

[4]  J. Mikrut,et al.  Analysis of red blood cell cytoskeleton using an atomic force microscope. , 1994, American biotechnology laboratory.

[5]  D. Parry,et al.  α-Helical coiled coils — a widespread motif in proteins , 1986 .

[6]  E. Evans,et al.  Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. , 1994, Annual review of biophysics and biomolecular structure.

[7]  C. Calladine,et al.  Understanding DNA: The Molecule & How It Works , 1992 .

[8]  R M Hochmuth,et al.  Erythrocyte membrane elasticity and viscosity. , 1987, Annual review of physiology.

[9]  B. Vértessy,et al.  Elasticity of the human red cell membrane skeleton. Effects of temperature and denaturants. , 1989, Biophysical journal.

[10]  Y. Yawata,et al.  Hereditary elliptocytosis associated with spectrin Le Puy in a Japanese family: Ultrastructural aspect of the red cell skeleton , 1994, European journal of haematology.

[11]  R Josephs,et al.  Ultrastructure of the intact skeleton of the human erythrocyte membrane , 1986, The Journal of cell biology.

[12]  E. Evans,et al.  Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. , 1994, Science.

[13]  A. Chishti,et al.  Spectrin cagliari. an Ala-->Gly substitution in helix 1 of beta spectrin repeat 17 that severely disrupts the structure and self-association of the erythrocyte spectrin heterodimer. , 1993, The Journal of biological chemistry.

[14]  Fumihiko Tanaka,et al.  Elastic theory of supercoiled DNA , 1985 .

[15]  D. Speicher The present status of erythrocyte spectrin structure: The 106‐residue repetitive structure is a basic feature of an entire class of proteins , 1986, Journal of cellular biochemistry.

[16]  J. Wade,et al.  Ultrastructure and immunocytochemistry of the isolated human erythrocyte membrane skeleton. , 1993, Cell motility and the cytoskeleton.

[17]  W. Sawyer,et al.  Rotational dynamics of erythrocyte spectrin. , 1989, Biochimica et biophysica acta.

[18]  A. Mikkelsen,et al.  Some viscoelastic properties of human erythrocyte spectrin networks end-linked in vitro. , 1985, Biochimica et biophysica acta.

[19]  D A Parry,et al.  Structural features in the heptad substructure and longer range repeats of two-stranded alpha-fibrous proteins. , 1990, International journal of biological macromolecules.

[20]  S Chien,et al.  An elastic network model based on the structure of the red blood cell membrane skeleton. , 1996, Biophysical journal.

[21]  A. McLachlan Structural implications of the myosin amino acid sequence. , 1984, Annual review of biophysics and bioengineering.

[22]  C. R. Calladine,et al.  Theory of Shell Structures , 1983 .

[23]  D. Branton,et al.  The complete sequence of Drosophila alpha-spectrin: conservation of structural domains between alpha-spectrins and alpha-actinin , 1989, The Journal of cell biology.

[24]  S Chien,et al.  Influence of network topology on the elasticity of the red blood cell membrane skeleton. , 1997, Biophysical journal.

[25]  N. Go,et al.  Fluctuations and mechanical strength of α‐helices of polyglycine and poly(L‐alanine) , 1976 .

[26]  Georg E. Schulz,et al.  Principles of Protein Structure , 1979 .

[27]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[28]  J. H. Weiner,et al.  Statistical Mechanics of Elasticity , 1983 .

[29]  M. J. Clague,et al.  Transient dichroism studies of spectrin rotational diffusion in solution and bound to erythrocyte membranes. , 1990, Biochemistry.

[30]  J. Ferry,et al.  Flexibility of myosin rod determined from dilute solution viscoelastic measurements. , 1982, Biochemistry.

[31]  D M Shotton,et al.  The molecular structure of human erythrocyte spectrin. Biophysical and electron microscopic studies. , 1979, Journal of molecular biology.

[32]  D. Branton,et al.  Visualization of the protein associations in the erythrocyte membrane skeleton. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Wade,et al.  Ultrastructure of the human erythrocyte cytoskeleton and its attachment to the membrane. , 1991, Cell motility and the cytoskeleton.

[34]  M. Ostoja-Starzewski,et al.  Linear elasticity of planar delaunay networks: Random field characterization of effective moduli , 1989 .

[35]  D. Branton,et al.  Spectrin-actin associations studied by electron microscopy of shadowed preparations , 1980, Cell.

[36]  R. Waugh,et al.  Thermoelasticity of red blood cell membrane. , 1979, Biophysical journal.

[37]  P. Agre,et al.  Alteration of the erythrocyte membrane skeletal ultrastructure in hereditary spherocytosis, hereditary elliptocytosis, and pyropoikilocytosis. , 1990, Blood.

[38]  J. Palek,et al.  Clinical expression and laboratory detection of red blood cell membrane protein mutations. , 1993, Seminars in hematology.

[39]  M. Kuroda,et al.  Conformational change of skeletal muscle α-actinin induced by salt , 1994 .

[40]  Vincent T. Marchesi,et al.  Erythrocyte spectrin is comprised of many homologous triple helical segments , 1984, Nature.

[41]  R. Cross,et al.  Structural predictions for the central domain of dystrophin , 1990, FEBS letters.

[42]  D. Gilligan,et al.  The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane. , 1993, Annual review of cell biology.

[43]  Shih-Chun Liu,et al.  Oligomeric states of spectrin in normal erythrocyte membranes: Biochemical and electron microscopic studies , 1984, Cell.

[44]  P. Jones,et al.  The sequence of chick alpha-actinin reveals homologies to spectrin and calmodulin. , 1987, The Journal of biological chemistry.

[45]  R. Josephs,et al.  On the structure of erythrocyte spectrin in partially expanded membrane skeletons. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[46]  D. Speicher,et al.  Location of the human red cell spectrin tetramer binding site and detection of a related "closed" hairpin loop dimer using proteolytic footprinting. , 1993, The Journal of biological chemistry.

[47]  D A Parry,et al.  Analysis of the three-alpha-helix motif in the spectrin superfamily of proteins. , 1992, Biophysical journal.

[48]  A. Baruchel,et al.  A common type of the spectrin alpha I 46-50a-kD peptide abnormality in hereditary elliptocytosis and pyropoikilocytosis is associated with a mutation distant from the proteolytic cleavage site. Evidence for the functional importance of the triple helical model of spectrin. , 1992, The Journal of clinical investigation.

[49]  A. Mikkelsen,et al.  Human erythrocyte spectrin dimer intrinsic viscosity: temperature dependence and implications for the molecular basis of the erythrocyte membrane free energy. , 1985, Biochimica et biophysica acta.

[50]  M. Kozlov,et al.  Model of red blood cell membrane skeleton: electrical and mechanical properties. , 1987, Journal of theoretical biology.

[51]  D. Branton,et al.  Crystal structure of the repetitive segments of spectrin. , 1993, Science.

[52]  R. Johnson,et al.  Shape and volume changes in erythrocyte ghosts and spectrin-actin networks , 1980, The Journal of cell biology.

[53]  J. Wootton,et al.  Structural analysis of homologous repeated domains in α-actinin and spectrin , 1989 .

[54]  S Chien,et al.  Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane. , 1978, Biophysical journal.

[55]  J. Winkelmann,et al.  Erythroid and nonerythroid spectrins , 1993 .

[56]  L. Derick,et al.  Visualization of the hexagonal lattice in the erythrocyte membrane skeleton , 1987, The Journal of cell biology.

[57]  L. Holm,et al.  Primary structure of the brain alpha-spectrin. , 1989 .

[58]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[59]  D. Boal,et al.  Computer simulation of a model network for the erythrocyte cytoskeleton. , 1994, Biophysical journal.

[60]  Christoph F. Schmidt,et al.  Conformation and elasticity of the isolated red blood cell membrane skeleton. , 1992, Biophysical journal.

[61]  A. Mikkelsen,et al.  The human erythrocyte membrane skeleton may be an ionic gel , 1986, European Biophysics Journal.

[62]  C. Bert,et al.  Theory of wire rope , 1990 .