Modification of Hydrophobic Self‐Assembled Monolayers with Nanoparticles for Improved Wettability and Enhanced Carrier Lifetimes Over Large Areas in Perovskite Solar Cells

[1]  Zheng Hong Zhu,et al.  Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact , 2023, Science.

[2]  S. Albrecht,et al.  Wettability Improvement of a Carbazole-Based Hole-Selective Monolayer for Reproducible Perovskite Solar Cells , 2023, ACS Energy Letters.

[3]  Y. Zhong,et al.  Next-generation applications for integrated perovskite solar cells , 2023, Communications Materials.

[4]  B. Rech,et al.  Nano-optical designs for high-efficiency monolithic perovskite–silicon tandem solar cells , 2022, Nature Nanotechnology.

[5]  Bryon W. Larson,et al.  Surface reaction for efficient and stable inverted perovskite solar cells , 2022, Nature.

[6]  J. Cairney,et al.  Cation‐Diffusion‐Based Simultaneous Bulk and Surface Passivations for High Bandgap Inverted Perovskite Solar Cell Producing Record Fill Factor and Efficiency , 2022, Advanced Energy Materials.

[7]  M. Liang,et al.  Conjugation Engineering of Spiro-Based Hole Transport Materials for Efficient and Stable Perovskite Solar Cells , 2022, ACS Energy Letters.

[8]  Thomas G. Allen,et al.  Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx , 2022, Science.

[9]  Y. Mai,et al.  Roles of Long‐Chain Alkylamine Ligands in Triple‐Halide Perovskites for Efficient NiOx‐Based Inverted Perovskite Solar Cells , 2022 .

[10]  D. Hertel,et al.  Perovskite–organic tandem solar cells with indium oxide interconnect , 2022, Nature.

[11]  M. Wienk,et al.  Finetuning Hole-Extracting Monolayers for Efficient Organic Solar Cells , 2022, ACS applied materials & interfaces.

[12]  Soohyun Bae,et al.  Perovskite/Silicon Tandem Solar Cells with a Voc of 1784 mV Based on an Industrially Feasible 25 cm2 TOPCon Silicon Cell , 2022, ACS Applied Energy Materials.

[13]  Thomas G. Allen,et al.  Damp heat–stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions , 2022, Science.

[14]  V. Zardetto,et al.  Monolithic All‐Perovskite Tandem Solar Cells with Minimized Optical and Energetic Losses , 2021, Advanced materials.

[15]  Jianfeng Lin,et al.  Interfacial Engineering with a Hole-Selective Self-Assembled Monolayer for Tin Perovskite Solar Cells via a Two-Step Fabrication , 2021, ACS Energy Letters.

[16]  Yang Yang,et al.  Defect passivation of perovskites in high efficiency solar cells , 2021, Journal of Physics: Energy.

[17]  S. Ravi P. Silva,et al.  EDITORIAL: Now is the Time for Energy Materials Research to Save the Planet , 2021, ENERGY & ENVIRONMENTAL MATERIALS.

[18]  L. Ye,et al.  Highly Efficient and Thickness Insensitive Inverted Triple-Cation Perovskite Solar Cells Fabricated by Gas Pumping Method. , 2021, The journal of physical chemistry letters.

[19]  R. Tadmor Open Problems in Wetting Phenomena: Pinning Retention Forces. , 2021, Langmuir : the ACS journal of surfaces and colloids.

[20]  S. Albrecht,et al.  Enhanced Self-Assembled Monolayer Surface Coverage by ALD NiO in p-i-n Perovskite Solar Cells , 2021, ACS applied materials & interfaces.

[21]  Qing Sun,et al.  Small grains as recombination hot spots in perovskite solar cells , 2021, Matter.

[22]  U. Bach,et al.  A Lab-to-Fab Study toward Roll-to-Roll Fabrication of Reproducible Perovskite Solar Cells under Ambient Room Conditions , 2021, Cell Reports Physical Science.

[23]  B. Rech,et al.  Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction , 2020, Science.

[24]  I. Marko,et al.  Reduced bilateral recombination by functional molecular interface engineering for efficient inverted perovskite solar cells , 2020 .

[25]  Baoquan Sun,et al.  High-Efficiency Perovskite Light-Emitting Diodes with Improved Interfacial Contact. , 2020, ACS applied materials & interfaces.

[26]  B. Stannowski,et al.  A piperidinium salt stabilizes efficient metal-halide perovskite solar cells , 2020, Science.

[27]  S. R. Silva,et al.  Tailoring Perovskite Adjacent Interfaces by Conjugated Polyelectrolyte for Stable and Efficient Solar Cells , 2020 .

[28]  Kai Zhu,et al.  Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures , 2020, Nature Energy.

[29]  Y. Mai,et al.  The fabrication of homogeneous perovskite films on non-wetting interfaces enabled by physical modification , 2019, Journal of Energy Chemistry.

[30]  T. Bein,et al.  Universal Nanoparticle Wetting Agent for Upscaling Perovskite Solar Cells. , 2019, ACS applied materials & interfaces.

[31]  S. Albrecht,et al.  Self‐Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells , 2018, Advanced Energy Materials.

[32]  Rui Zhu,et al.  Enhanced photovoltage for inverted planar heterojunction perovskite solar cells , 2018, Science.

[33]  T. Buonassisi,et al.  Promises and challenges of perovskite solar cells , 2017, Science.

[34]  Kwanghee Lee,et al.  Achieving Large‐Area Planar Perovskite Solar Cells by Introducing an Interfacial Compatibilizer , 2017, Advanced materials.

[35]  Yongbo Yuan,et al.  Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells , 2015, Nature Communications.

[36]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[37]  J. Nelson,et al.  On the Differences between Dark and Light Ideality Factor in Polymer:Fullerene Solar Cells , 2013 .

[38]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[39]  Lei Zhang,et al.  Facile synthesis and unique physicochemical properties of three-dimensionally ordered macroporous magnesium oxide, gamma-alumina, and ceria-zirconia solid solutions with crystalline mesoporous walls. , 2009, Inorganic chemistry.

[40]  B. Kasprzyk-Hordern Chemistry of alumina, reactions in aqueous solution and its application in water treatment. , 2004, Advances in colloid and interface science.

[41]  P. G. de Gennes,et al.  A model for contact angle hysteresis , 1984 .

[42]  G. Mills,et al.  Surface Strain in Oxide Cata1ysts–A1umina , 1955 .