Some applications of Loop-subdivision wavelet tight frames to the processing of 3D graphics

[1]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[2]  Martin Bertram,et al.  Biorthogonal Loop-Subdivision Wavelets , 2004, Computing.

[3]  J. Stöckler,et al.  Tight wavelet frames for subdivision , 2008 .

[4]  Liang Xue-zhang A Region-growing Algorithm for Triangular Mesh Surface Reconstruction from Point-cloud Data , 2008 .

[5]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[6]  I. Daubechies,et al.  Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .

[7]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[8]  Andrei Khodakovsky,et al.  Progressive geometry compression , 2000, SIGGRAPH.

[9]  C. Chui,et al.  Compactly supported tight and sibling frames with maximum vanishing moments , 2001 .

[10]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[11]  Hans-Peter Seidel,et al.  A Shrink Wrapping Approach to Remeshing Polygonal Surfaces , 1999, Comput. Graph. Forum.

[12]  Marc Levoy,et al.  Fitting smooth surfaces to dense polygon meshes , 1996, SIGGRAPH.

[13]  C. Chui,et al.  Nonstationary tight wavelet frames, I: Bounded intervals , 2004 .

[14]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[15]  Maria Charina,et al.  Tight wavelet frames for irregular multiresolution analysis , 2008 .

[16]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[17]  Joe Warren,et al.  Subdivision Methods for Geometric Design: A Constructive Approach , 2001 .