Tunable nanostructured conducting polymers for neural interface applications

Advancement in the development of traditional metallic-based implantable electrodes for neural interfacing has reached a plateau in recent years in terms of their ability to provide safe, long-term, and high resolution stimulation and/or recording. The reduction of electrode size enables higher selectivity through increased electrodes per implant device; however, it also results in lower sensitivity at electrode-tissue interfaces. This limitation can be addressed through the utilization of conducting polymer (CP) coatings, which increase the effective surface area. In this work, we investigate the surface roughness of two common conducting polymers; poly(pyrrole) (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) in the form of films deposited using both potentiostatic (PSTAT) and galvanostatic (GSTAT) methods. We found that the surface roughness of both CP films can be increased by over 90% through control of both deposition time and applied electrical deposition (current for GSTAT and voltage for PSTAT). The impedance of PPy-modified electrodes was found to decrease by up to 88%. This study shows that the surface roughness of CPs can be modulated to control electrical properties of neural electrodes and may improve the cellular response of neurons.