SPECTROSCOPIC DETECTION OF CARBON MONOXIDE IN THE YOUNG SUPERNOVA REMNANT CASSIOPEIA A

We report the detection of carbon monoxide (CO) emission from the young supernova remnant Cassiopeia A (Cas A) at wavelengths corresponding to the fundamental vibrational mode at 4.65 μm. We obtained AKARI Infrared Camera spectra toward four positions which unambiguously reveal the broad characteristic CO ro-vibrational band profile. The observed positions include unshocked ejecta at the center, indicating that CO molecules form in the ejecta at an early phase. We extracted a dozen spectra across Cas A along the long 1′ slits and compared these to simple CO emission models in local thermodynamic equilibrium to obtain first-order estimates of the excitation temperatures and CO masses involved. Our observations suggest that significant amounts of carbon may have been locked up in CO since the explosion 330 years ago. Surprisingly, CO has not been efficiently destroyed by reactions with ionized He or the energetic electrons created by the decay of the radiative nuclei. Our CO detection thus implies that less carbon is available to form carbonaceous dust in supernovae than is currently thought and that molecular gas could lock up a significant amount of heavy elements in supernova ejecta.

[1]  U. Hwang,et al.  A CHANDRA X-RAY SURVEY OF EJECTA IN THE CASSIOPEIA A SUPERNOVA REMNANT , 2011, 1111.7316.

[2]  M. Sauvage,et al.  Herschel Detects a Massive Dust Reservoir in Supernova 1987A , 2011, Science.

[3]  William T. Reach,et al.  THE THREE-DIMENSIONAL STRUCTURE OF CASSIOPEIA A , 2010, 1011.3858.

[4]  O. Krause,et al.  A Herschel PACS and SPIRE study of the dust content of the Cassiopeia A supernova remnant , 2010, 1005.2688.

[5]  J. Cami,et al.  SPECTRAFACTORY.NET: A DATABASE OF MOLECULAR MODEL SPECTRA , 2010 .

[6]  E. Dwek,et al.  THE CHEMISTRY OF POPULATION III SUPERNOVA EJECTA. I. FORMATION OF MOLECULES IN THE EARLY UNIVERSE , 2009, 0907.3621.

[7]  J. Rho,et al.  SPITZER SPECTRAL MAPPING OF SUPERNOVA REMNANT CASSIOPEIA A , 2008, 0810.3014.

[8]  S. Lilly,et al.  Primordial Massive Supernovae as the First Molecular Factories in the Early Universe , 2008, 0807.2511.

[9]  J. Rho,et al.  Freshly Formed Dust in the Cassiopeia A Supernova Remnant as Revealed by the Spitzer Space Telescope , 2007, 0709.2880.

[10]  Munetaka Ueno,et al.  Near-Infrared and Mid-Infrared Spectroscopy with the Infrared Camera (IRC) for AKARI , 2007, 0708.4290.

[11]  N. Takeyama,et al.  The Infrared Camera (IRC) for AKARI–Design and Imaging Performance , 2007, 0705.4144.

[12]  J. Rho,et al.  Spitzer IRAC Images and Sample Spectra of Cassiopeia A’s Explosion , 2006, astro-ph/0610838.

[13]  R. Kotak,et al.  Spitzer Measurements of Atomic and Molecular Abundances in the Type IIP SN 2005af , 2006, astro-ph/0609706.

[14]  Erin C. Smith,et al.  FLITECAM: a 1-5 micron camera and spectrometer for SOFIA , 2006, SPIE Astronomical Telescopes + Instrumentation.

[15]  D. O. Astronomy,et al.  Dust in the Early Universe: Dust Formation in the Ejecta of Population III Supernovae , 2003, astro-ph/0307108.

[16]  J. Wheeler,et al.  Carbon Monoxide in the Type Ic Supernova 2000ew , 2002, astro-ph/0207480.

[17]  R. Fesen An Optical Survey of Outlying Ejecta in Cassiopeia A: Evidence for a Turbulent, Asymmetric Explosion , 2001 .

[18]  J. Wheeler,et al.  Carbon Monoxide Formation in SN 1987A , 1999 .

[19]  B. Leibundgut,et al.  Carbon monoxide in supernova 1995ad , 1996 .

[20]  A. Dalgarno,et al.  The Oxygen Temperature of SN 1987A , 1995 .

[21]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[22]  D. Goorvitch Infrared CO line for the X 1 Sigma(+) state , 1994 .

[23]  Martin G. Cohen,et al.  Airborne Spectrophotometry of SN 1987A from 1.7 to 12.6 Microns: Time History of the Dust Continuum and Line Emission , 1993 .

[24]  A. Dalgarno,et al.  Carbon Monoxide in SN 1987A , 1992 .

[25]  J. Spyromilio,et al.  Carbon monoxide in supernova 1987A , 1988, Nature.

[26]  S. Woosley,et al.  EVOLUTION AND EXPLOSION OF MASSIVE STARS * , 1978, Reviews of Modern Physics.