Synchronization of Passifiable Lurie Systems Via Limited-Capacity Communication Channel

Output-feedback controlled synchronization problems for a class of nonlinear unstable systems under information constraints imposed by limited capacity of the communication channel are analyzed. A binary time-varying coder-decoder scheme is described, and a theoretical analysis for multidimensional master-slave systems represented in Lurie form (linear part plus nonlinearity depending only on measurable outputs) is provided. An output-feedback control law is proposed based on the passification theorem. It is shown that the synchronization error exponentially tends to zero for sufficiently high transmission rate (channel capacity). The results obtained for the synchronization problem can be extended to tracking problems in a straightforward manner if the reference signal is described by an external (exogenous) state space model. The results are illustrated by the controlled synchronization of two chaotic Chua systems via a communication channel with limited capacity.

[1]  David J. Hill,et al.  Impulsive Synchronization of Chaotic Lur'e Systems by Linear Static Measurement Feedback: An LMI Approach , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[2]  Alexander L. Fradkov,et al.  Nonlinear and Adaptive Control of Complex Systems , 1999 .

[3]  C. Byrnes Output Regulation of Uncertain Nonlinear Systems , 1997 .

[4]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[5]  Alexander L. Fradkov Passification of Non-square Linear Systems and Feedback Yakubovich - Kalman - Popov Lemma , 2003, Eur. J. Control.

[6]  Dragan Nesic,et al.  Practical encoders for controlling nonlinear systems under communication constraints , 2005, CDC 2005.

[7]  R. Curry Estimation and Control with Quantized Measurements , 1970 .

[8]  Chaouki T. Abdallah,et al.  Static output feedback: a survey , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[9]  Sanjoy K. Mitter,et al.  Endcoding complexity versus minimum distance , 2005, IEEE Transactions on Information Theory.

[10]  R. Murray,et al.  On the effect of quantization on performance at high rates , 2006, 2006 American Control Conference.

[11]  Robin J. Evans,et al.  Feedback Control Under Data Rate Constraints: An Overview , 2007, Proceedings of the IEEE.

[12]  Daniel Liberzon,et al.  Hybrid feedback stabilization of systems with quantized signals , 2003, Autom..

[13]  Claudio De Persis,et al.  n-bit stabilization of n-dimensional nonlinear systems in feedforward form , 2004, IEEE Transactions on Automatic Control.

[14]  Guanrong Chen,et al.  A time-varying complex dynamical network model and its controlled synchronization criteria , 2004, IEEE Trans. Autom. Control..

[15]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[16]  Andrew G. Alleyne,et al.  Control of a class of nonlinear systems subject to periodic exogenous signals , 1997, IEEE Trans. Control. Syst. Technol..

[17]  R. Evans,et al.  Mean square stabilisability of stochastic linear systems with data rate constraints , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[18]  Robin J. Evans,et al.  Stabilizability of Stochastic Linear Systems with Finite Feedback Data Rates , 2004, SIAM J. Control. Optim..

[19]  Daniel Liberzon,et al.  Quantized feedback stabilization of linear systems , 2000, IEEE Trans. Autom. Control..

[20]  Georgi M. Dimirovski,et al.  A new approach to static output feedback stabilization of linear dynamic systems , 2006, Int. J. Syst. Sci..

[21]  Wei Xing Zheng,et al.  Integral-observer-based chaos synchronization , 2006, IEEE Trans. Circuits Syst. II Express Briefs.

[22]  Alexander L. Fradkov,et al.  Chaotic observer-based synchronization under information constraints. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  C. De Persis,et al.  On stabilization of nonlinear systems under data rate constraints using output measurements , 2006 .

[24]  Dragan Nesic,et al.  Stabilization of sampled-data nonlinear systems via backstepping on their Euler approximate model , 2006, Autom..

[25]  Alexander L. Fradkov,et al.  Synchronization of nonlinear systems under information constraints. , 2007, Chaos.

[26]  Lennart Ljung,et al.  Analysis of recursive stochastic algorithms , 1977 .

[27]  Seth Lloyd,et al.  Information-theoretic approach to the study of control systems , 2001, physics/0104007.

[28]  Henk Nijmeijer,et al.  c ○ World Scientific Publishing Company ADAPTIVE OBSERVER-BASED SYNCHRONIZATION FOR COMMUNICATION , 1999 .

[29]  Kazuyuki Aihara,et al.  Stability of Genetic Networks With SUM Regulatory Logic: Lur'e System and LMI Approach , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[30]  Robin J. Evans,et al.  Topological feedback entropy and Nonlinear stabilization , 2004, IEEE Transactions on Automatic Control.

[31]  Andrea Serrani,et al.  Harmonic Disturbance Rejection in Tracking Control of Euler-Lagrange Systems: An External Model Approach , 2007, IEEE Transactions on Control Systems Technology.

[32]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[33]  Alan V. Oppenheim,et al.  Synchronization of Lorenz-based chaotic circuits with applications to communications , 1993 .

[34]  Qing-Long Han,et al.  On Designing Time-Varying Delay Feedback Controllers for Master–Slave Synchronization of Lur'e Systems , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[35]  Antonio Loría,et al.  Adaptive Tracking Control of Chaotic Systems With Applications to Synchronization , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[36]  Achour Ouslimani,et al.  Feasibility of Analog Realization of a Sliding-Mode Observer: Application to Data Transmission , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[37]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[38]  John Baillieul,et al.  Robust quantization for digital finite communication bandwidth (DFCB) control , 2004, IEEE Transactions on Automatic Control.

[39]  Touchette,et al.  Information-theoretic limits of control , 1999, Physical review letters.

[40]  M.W. Spong,et al.  Output Synchronization of Nonlinear Systems with Time Delay in Communication , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[41]  Henk Nijmeijer Control of chaos and synchronization , 1997 .

[42]  Andrey V. Savkin,et al.  Detectability and Output Feedback Stabilizability of Nonlinear Networked Control Systems , 2007, Proceedings of the 44th IEEE Conference on Decision and Control.

[43]  Sekhar Tatikonda,et al.  Control under communication constraints , 2004, IEEE Transactions on Automatic Control.

[44]  Robin J. Evans,et al.  Adaptive Observer-Based Synchronization of Chaotic Systems With First-Order Coder in the Presence of Information Constraints , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[45]  R. Brockett,et al.  Systems with finite communication bandwidth constraints. I. State estimation problems , 1997, IEEE Trans. Autom. Control..