HYDROGEN IN SEMICONDUCTORS

▪ Abstract Hydrogen strongly affects the properties of electronic materials. Interstitial monatomic hydrogen is always electrically active and usually counteracts the prevailing conductivity of the semiconductor. In some materials, however, hydrogen acts as a source of doping. We describe the mechanisms that govern interactions between hydrogen and semiconductors, including monatomic hydrogen, hydrogen molecules, and hydrogen-related complexes. We also discuss the behavior of hydrogen on the surface and its role in the growth process. The fundamental principles are illustrated with practical examples, many of them for the technologically relevant case of gallium nitride.

[1]  Chris G. Van de Walle,et al.  Universal alignment of hydrogen levels in semiconductors, insulators and solutions , 2003, Nature.

[2]  Yu.V. Gorelkinskii,et al.  Electron paramagnetic resonance of hydrogen in silicon , 1991 .

[3]  E. Mollwo Die Wirkung von Wasserstoff auf die Leitfähigkeit und Lumineszenz von Zinkoxydkristallen , 1954 .

[4]  Andersen,et al.  Lattice location of deuterium interacting with the boron acceptor in silicon. , 1988, Physical review letters.

[5]  Peter L. Walters,et al.  Key to understanding interstitial H2 in Si. , 2002, Physical review letters.

[6]  D. Carlson,et al.  Direct role of hydrogen in the Staebler-Wronski effect in hydrogenated amorphous silicon. , 2002, Physical review letters.

[7]  A. Wickenden,et al.  Composition and structure of the GaN{0001¯}-(1×1) surface , 1996 .

[8]  C. Walle,et al.  Identification of hydrogen configurations in p-type GaN through first-principles calculations of vibrational frequencies , 2003 .

[9]  H. Wagner,et al.  Determination of the hydrogen diffusion coefficient in hydrogenated amorphous silicon from hydrogen effusion experiments , 1982 .

[10]  Michael J. Callahan,et al.  Infrared absorption from OH− ions adjacent to lithium acceptors in hydrothermally grown ZnO , 2004 .

[11]  Quantum Distributions of Muonium and Hydrogen in Crystalline Silicon , 1998 .

[12]  William R. Wampler,et al.  Diffusion, release, and uptake of hydrogen in magnesium-doped gallium nitride: Theory and experiment , 2001 .

[13]  S. Estreicher Hydrogen-related defects in crystalline semiconductors: a theorist's perspective , 1995 .

[14]  Pantelides,et al.  Theory of hydrogen diffusion and reactions in crystalline silicon. , 1989, Physical review letters.

[15]  Matthew D. McCluskey,et al.  Local vibrational modes of impurities in semiconductors , 2000 .

[16]  Pantelides,et al.  First-principles calculations of diffusion coefficients: Hydrogen in silicon. , 1990, Physical review letters.

[17]  C. Walle,et al.  Microscopic theory of hydrogen in silicon devices , 2000 .

[18]  Weber,et al.  Dissociation energies of shallow-acceptor-hydrogen pairs in silicon. , 1989, Physical review. B, Condensed matter.

[19]  Johnson,et al.  Inverted order of acceptor and donor levels of monatomic hydrogen in silicon. , 1994, Physical review letters.

[20]  Wagner,et al.  Isolated Hydrogen Molecules in GaAs. , 1996, Physical review letters.

[21]  Jörg Neugebauer,et al.  Structure of GaN(0001): The laterally contracted Ga bilayer model , 2000 .

[22]  Martin,et al.  Theoretical study of band offsets at semiconductor interfaces. , 1987, Physical review. B, Condensed matter.

[23]  E. Haller,et al.  Acceptor complexes in germanium: Systems with tunneling hydrogen , 1980 .

[24]  Johnson,et al.  Interstitial hydrogen and neutralization of shallow-donor impurities in single-crystal silicon. , 1986, Physical review letters.

[25]  Takashi Mukai,et al.  Hole Compensation Mechanism of P-Type GaN Films , 1992 .

[26]  J. Weber,et al.  Raman Spectroscopy of Hydrogen Molecules in Crystalline Silicon , 1998 .

[27]  W. Mönch,et al.  Vibrational and electronic excitations at GaN{0001} surfaces , 2000 .

[28]  Kahn,et al.  Trigonal hydrogen-related acceptor complexes in germanium. , 1987, Physical review. B, Condensed matter.

[29]  P. Cohen,et al.  A rate equation model for the growth of GaN on GaN(0001̄) by molecular beam epitaxy , 2000 .

[30]  R. Pritchard,et al.  Interactions of hydrogen molecules with bond-centered interstitial oxygen and another defect center in silicon , 1997 .

[31]  C. Walle,et al.  Shallow donor state of hydrogen in indium nitride , 2003 .

[32]  A. Wickenden,et al.  Desorption of hydrogen from GaN(0001) observed by HREELS and ELS , 1999 .

[33]  Chang,et al.  Diatomic-hydrogen-complex diffusion and self-trapping in crystalline silicon. , 1989, Physical review letters.

[34]  C. Walle,et al.  Stability, diffusivity, and vibrational properties of monatomic and molecular hydrogen in wurtzite GaN , 2003 .

[35]  V. Walle,et al.  Hydrogen as a cause of doping in zinc oxide , 2000 .

[36]  Jörg Neugebauer,et al.  Role of hydrogen in doping of GaN , 1996 .

[37]  S. Gates,et al.  Hydrogen desorption and ammonia adsorption on polycrystalline GaN surfaces , 1995 .

[38]  Theory of hydrogen in GaN , 1999 .

[39]  J. Sun,et al.  Deactivation of the boron acceptor in silicon by hydrogen , 1983 .

[40]  C. Walle,et al.  First-principles surface phase diagram for hydrogen on GaN surfaces. , 2002, Physical review letters.

[41]  Pantelides Defects in amorphous silicon: A new perspective. , 1986, Physical review letters.

[42]  P. Briddon,et al.  Hydrogen in diamond , 1988 .

[43]  E. Haller,et al.  Hydrogen interactions with defects in crystalline solids , 1992 .

[44]  Buda,et al.  Proton diffusion in crystalline silicon. , 1989, Physical Review Letters.

[45]  S. Estreicher,et al.  RADIATION-INDUCED FORMATION OF H*2 IN SILICON , 1999 .

[46]  M. Stutzmann,et al.  Lattice relaxation due to hydrogen passivation in boron‐doped silicon , 1988 .

[47]  N. Giles,et al.  The effect of atomic hydrogen on the growth of gallium nitride by molecular beam epitaxy , 1996 .

[48]  Stavola,et al.  Hydrogen motion in defect complexes: Reorientation kinetics of the B-H complex in silicon. , 1988, Physical review letters.

[49]  Van de Walle CG,et al.  First-principles calculations of hyperfine parameters. , 1993, Physical review. B, Condensed matter.

[50]  C. Walle,et al.  First-principles calculations for defects and impurities: Applications to III-nitrides , 2004 .

[51]  Zhang,et al.  Diatomic-hydrogen-complex dissociation: A microscopic model for metastable defect generation in Si. , 1990, Physical review letters.

[52]  Andreoni,et al.  First-principles calculations of self-diffusion constants in silicon. , 1993, Physical review letters.

[53]  Luke,et al.  29Si hyperfine structure of anomalous muonium in silicon: Proof of the bond-centered model. , 1988, Physical review letters.

[54]  C. Walle ENERGETICS AND VIBRATIONAL FREQUENCIES OF INTERSTITIAL H2 MOLECULES IN SEMICONDUCTORS , 1998 .

[55]  T. Frauenheim,et al.  Theory of Ga, N and H terminated GaN (0 0 0 1) (0 0 0 1) surfaces , 1998 .

[56]  J. Pankove,et al.  Neutralization of Shallow Acceptor Levels in Silicon by Atomic Hydrogen , 1983 .

[57]  S. Denbaars,et al.  Surface Structure of GaN(0001) in the Chemical Vapor Deposition Environment , 1999 .

[58]  M. Nardelli,et al.  THEORY OF SURFACE MORPHOLOGY OF WURTZITE GAN (0001) SURFACES , 1997 .

[59]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[60]  Jones,et al.  H2* defect in crystalline silicon. , 1993, Physical review letters.

[61]  Van de Walle CG,et al.  Hydrogen interactions with self-interstitials in silicon. , 1995, Physical review. B, Condensed matter.

[62]  Chang,et al.  Hydrogen bonding and diffusion in crystalline silicon. , 1989, Physical review. B, Condensed matter.

[63]  R. Felice,et al.  Energetics of H and NH_2 on GaN(1010) and implications for the origin of nanopipe defects , 1997 .

[64]  J. Fritsch,et al.  Ab initio calculation of the stoichiometry and structure of the (0001) surfaces of GaN and AlN , 1998 .