On the (un)decidability of fuzzy description logics under Łukasiewicz t-norm

Recently there have been some unexpected results concerning Fuzzy Description Logics (FDLs) with General Concept Inclusions (GCIs). They show that, unlike the classical case, the DL ALC with GCIs does not have the finite model property under Lukasiewicz Logic or Product Logic, the proposed reasoning algorithms are neither correct nor complete and, specifically, knowledge base satisfiability is an undecidable problem for Product Logic. In this work, we show that knowledge base satisfiability is also an undecidable problem for Lukasiewicz Logic. We additionally provide a decision algorithm for acyclic ALC knowledge bases under Lukasiewicz Logic via a Mixed Integer Linear Programming (MILP) based procedure (note, however, that the decidability of this problem is already known). While similar MILP based algorithms have been proposed in the literature for acyclic ALC knowledge bases under Lukasiewicz Logic, none of them exhibit formal proofs of their correctness and completeness, which is the additional contribution here.

[1]  Fernando Bobillo,et al.  Crisp Representations and Reasoning for Fuzzy Ontologies , 2009, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[2]  Reiner Hähnle,et al.  Deduction in many-valued logics: a survey , 1997 .

[3]  Ian Horrocks,et al.  Using an Expressive Description Logic: FaCT or Fiction? , 1998, KR.

[4]  G. Stamou,et al.  Reasoning with Very Expressive Fuzzy Description Logics , 2007, J. Artif. Intell. Res..

[5]  Umberto Straccia,et al.  Fuzzy ontologies and fuzzy integrals , 2011, 2011 11th International Conference on Intelligent Systems Design and Applications.

[6]  Marco Cerami,et al.  Finite-Valued Lukasiewicz Modal Logic Is PSPACE-Complete , 2011, IJCAI.

[7]  B. C. Brookes,et al.  Information Sciences , 2020, Cognitive Skills You Need for the 21st Century.

[8]  Umberto Straccia,et al.  On Qualified Cardinality Restrictions in Fuzzy Description Logics under Ëukasiewicz semantics , 2008 .

[9]  Umberto Straccia,et al.  Reasoning with the finitely many-valued Lukasiewicz fuzzy Description Logic SROIQ , 2011, Inf. Sci..

[10]  Ian Horrocks,et al.  Reasoning with Axioms: Theory and Practice , 2000, KR.

[11]  Umberto Straccia Multi Criteria Decision Making in Fuzzy Description Logics: A First Step , 2009, KES.

[12]  Bernhard Nebel,et al.  An Empirical Analysis of Optimization Techniques for Terminological Representation Systems, or Making KRIS Get a Move On , 1992, KR.

[13]  Ian Horrocks,et al.  The Even More Irresistible SROIQ , 2006, KR.

[14]  Rafael Peñaloza,et al.  Description Logics over Lattices with Multi-Valued Ontologies , 2011, IJCAI.

[15]  A. Church Review: Emil L. Post, A Variant of a Recursively Unsolvable Problem , 1947 .

[16]  Umberto Straccia,et al.  Reasoning within Fuzzy Description Logics , 2011, J. Artif. Intell. Res..

[17]  Umberto Straccia,et al.  Transforming Fuzzy Description Logics into Classical Description Logics , 2004, JELIA.

[18]  Balder ten Cate,et al.  Hybrid logics , 2007, Handbook of Modal Logic.

[19]  Umberto Straccia,et al.  fuzzyDL: An expressive fuzzy description logic reasoner , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[20]  Umberto Straccia,et al.  Fuzzy description logics under Gödel semantics , 2009, Int. J. Approx. Reason..

[21]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[22]  Rafael Peñaloza,et al.  Finite Lattices Do Not Make Reasoning in ALCI Harder , 2011, URSW.

[23]  Umberto Straccia,et al.  Fuzzy Descriptions Logics with Fuzzy Truth Values , 2009, IFSA/EUSFLAT Conf..

[24]  Rafael Peñaloza,et al.  Are fuzzy description logics with general concept inclusion axioms decidable? , 2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011).

[25]  Umberto Straccia,et al.  Fuzzy description logics with general t-norms and datatypes , 2009, Fuzzy Sets Syst..

[26]  Ian Horrocks,et al.  A Description Logic with Transitive and Inverse Roles and Role Hierarchies , 1999, J. Log. Comput..

[27]  Umberto Straccia,et al.  Towards spatial reasoning in fuzzy description logics , 2009, 2009 IEEE International Conference on Fuzzy Systems.

[28]  Umberto Straccia,et al.  Managing uncertainty and vagueness in description logics for the Semantic Web , 2008, J. Web Semant..

[29]  Emil L. Post A variant of a recursively unsolvable problem , 1946 .

[30]  Umberto Straccia,et al.  Aggregation operators and Fuzzy OWL 2 , 2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011).

[31]  Umberto Straccia,et al.  On the Failure of the Finite Model Property in some Fuzzy Description Logics , 2010, Fuzzy Sets Syst..

[32]  Marco Cerami,et al.  Decidability of a Description Logic over Infinite-Valued Product Logic , 2010, KR.

[33]  H. P. Williams,et al.  Logic-Based Decision Support: Mixed Integer Model Formulation , 1989 .

[34]  Petr Hájek,et al.  Making fuzzy description logic more general , 2005, Fuzzy Sets Syst..

[35]  Àngel García-Cerdaña,et al.  Fuzzy Description Logics and t-norm based fuzzy logics , 2010, Int. J. Approx. Reason..

[36]  Reiner Hähnle,et al.  Advanced Many-Valued Logics , 2001 .

[37]  Rafael Peñaloza,et al.  GCIs Make Reasoning in Fuzzy DL with the Product T-norm Undecidable , 2011, Description Logics.

[38]  Klaus Schild,et al.  A Correspondence Theory for Terminological Logics: Preliminary Report , 1991, IJCAI.

[39]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[40]  Umberto Straccia,et al.  Description Logics with Fuzzy Concrete Domains , 2005, UAI.

[41]  Johan van Benthem,et al.  Modal Languages and Bounded Fragments of Predicate Logic , 1998, J. Philos. Log..

[42]  Rafael Peñaloza,et al.  On the Undecidability of Fuzzy Description Logics with GCIs and Product T-norm , 2011, FroCoS.

[43]  Ian Horrocks,et al.  Reasoning with Individuals for the Description Logic SHIQ , 2000, CADE.

[44]  Bernhard Nebel,et al.  Am empirical analysis of optimization techniques for terminological representation systems , 1994, Applied Intelligence.

[45]  Petr Hájek What does mathematical fuzzy logic offer to description logic? , 2006, Fuzzy Logic and the Semantic Web.

[46]  Umberto Straccia,et al.  Extending Datatype Restrictions in Fuzzy Description Logics , 2009, 2009 Ninth International Conference on Intelligent Systems Design and Applications.

[47]  Umberto Straccia,et al.  Mixed Integer Programming, General Concept Inclusions and Fuzzy Description Logics , 2007, EUSFLAT Conf..

[48]  Umberto Straccia,et al.  General Concept Inclusions inFluzzy Description Logics , 2006, ECAI.

[49]  Martin Otto,et al.  Back and forth between guarded and modal logics , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[50]  Petr Hájek,et al.  On witnessed models in fuzzy logic , 2007, Math. Log. Q..

[51]  Rafael Peñaloza,et al.  Fuzzy Ontologies over Lattices with T-norms , 2011, Description Logics.

[52]  Erich Grdel,et al.  Guarded Fragments of First-Order Logic: A Perspective for New Description Logics? , 1998 .

[53]  Umberto Straccia,et al.  Description Logics over Lattices , 2006, Int. J. Uncertain. Fuzziness Knowl. Based Syst..