Homogenization of Quasi-Crystalline Functionals via Two-Scale-Cut-and-Project Convergence

We consider a homogenization problem associated with quasi-crystalline multiple integrals of the form \begin{equation*} \begin{aligned} u_\varepsilon\in L^p(\Omega;\mathbb{R}^d) \mapsto \int_\Omega f_R\Big(x,\frac{x}{\varepsilon}, u_\varepsilon(x)\Big)\, dx, \end{aligned} \end{equation*} where $u_\varepsilon$ is subject to constant-coefficient linear partial differential constraints. The quasi-crystalline structure of the underlying composite is encoded in the dependence on the second variable of the Lagrangian, $f_R$, and is modeled via the cut-and-project scheme that interprets the heterogeneous microstructure to be homogenized as an irrational subspace of a higher-dimensional space. A key step in our analysis is the characterization of the quasi-crystalline two-scale limits of sequences of the vector fields $u_\varepsilon$ that are in the kernel of a given constant-coefficient linear partial differential operator, $\mathcal{A}$, that is, $\mathcal{A} u _\varepsilon =0$. Our results provide a generalization of related ones in the literature concerning the ${\rm \mathcal{A} =curl } $ case to more general differential operators $\mathcal{A}$ with constant coefficients, and without coercivity assumptions on the Lagrangian $f_R$.

[1]  N. Wellander,et al.  Homogenization of quasiperiodic structures and two-scale cut-and-projection convergence , 2019, 1911.03560.

[2]  Stochastic unfolding and homogenization , 2017, 1805.09546.

[3]  Yves Meyer,et al.  Quasicrystals, Diophantine approximation and algebraic numbers , 1995 .

[4]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[5]  Irene Fonseca,et al.  Reiterated Homogenization in BV via Multiscale Convergence , 2012, SIAM J. Math. Anal..

[6]  Andrea Braides Almost periodic methods in the theory of homogenization , 1992 .

[7]  E. Pan,et al.  Three-dimensional nonlocal buckling of composite nanoplates with coated one-dimensional quasicrystal in an elastic medium , 2020, International Journal of Solids and Structures.

[8]  P. Damasceno,et al.  Computational self-assembly of a one-component icosahedral quasicrystal. , 2015, Nature materials.

[9]  I. Fonseca,et al.  The limit behavior of a family of variational multiscale problems , 2007 .

[10]  Fa Dick,et al.  Algebraic theory of Penrose's non-periodic tilings of the plane. I, II : dedicated to G. Pólya , 1981 .

[11]  Grégoire Allaire,et al.  Multiscale convergence and reiterated homogenisation , 1996, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[12]  P. Steinhardt,et al.  Quasicrystals: a new class of ordered structures , 1984 .

[13]  I. Fonseca,et al.  A note on two scale compactness for $p = 1$ , 2015 .

[14]  Bernard Dacorogna,et al.  Weak Continuity and Weak Lower Semicontinuity of Non-Linear Functionals , 1982 .

[15]  I. Gayte,et al.  The two-scale convergence method applied to generalized Besicovitch spaces , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  Paul D. Bloom,et al.  Development of novel polymer/quasicrystal composite materials , 2000 .

[17]  S. Kozlov AVERAGING OF RANDOM OPERATORS , 1980 .

[18]  G. Allaire Homogenization and two-scale convergence , 1992 .

[19]  L. Modica,et al.  Nonlinear stochastic homogenization and ergodic theory. , 1986 .

[20]  G. Nguetseng A general convergence result for a functional related to the theory of homogenization , 1989 .

[21]  D. Nelson,et al.  Introduction to Quasicrystals , 1990 .

[22]  S. Neukamm Rigorous Derivation of a Homogenized Bending-Torsion Theory for Inextensible Rods from Three-Dimensional Elasticity , 2012 .

[23]  Bernard Dacorogna,et al.  Quasiconvexity and relaxation of nonconvex problems in the calculus of variations , 1982 .

[24]  R. Penrose Pentaplexity A Class of Non-Periodic Tilings of the Plane , 1979 .

[25]  I. Blech,et al.  The microstructure of rapidly solidified Al6Mn , 1985 .

[26]  X. Teng,et al.  Effect of cooling rates on solidification and microstructure of rapidly solidified Mg_57Zn_37Y_6 quasicrystal alloy , 2015 .

[27]  Guy Bouchitté,et al.  Homogenization of Dielectric Photonic Quasi Crystals , 2010, Multiscale Model. Simul..

[28]  Alicja Klimkowicz,et al.  Quaternary Quasicrystal Alloys for Hydrogen Storage Technology , 2020 .

[29]  Characterization of the Multiscale Limit Associated with Bounded Sequences in BV , 2011 .

[30]  Peter Wall,et al.  Two-scale convergence , 2002 .

[31]  Hua Zhu,et al.  Single-component quasicrystalline nanocrystal superlattices through flexible polygon tiling rule , 2018, Science.

[32]  I. Fonseca,et al.  Multiple integrals under differential constraints: Two-scale convergence and homogenization , 2010 .

[33]  Katz,et al.  Quasiperiodic patterns. , 1985, Physical review letters.

[34]  M. Morandotti,et al.  Homogenization of Functionals with Linear Growth in the Context of $$\mathcal A$$A-quasiconvexity , 2014, 1410.0490.

[35]  Jean-Marie Dubois,et al.  Quasicrystal–polymer composites for selective laser sintering technology , 2012 .

[36]  Doina Cioranescu,et al.  Homogenization of nonlinear integrals via the periodic unfolding method , 2004 .

[37]  M. Morandotti,et al.  HOMOGENIZATION OF FUNCTIONALS WITH LINEAR GROWTH IN THE CONTEXT OF A -QUASICONVEXITY , 2014 .

[38]  K. Kamiya,et al.  Discovery of superconductivity in quasicrystal , 2018, Nature Communications.

[39]  R. D. Arcangelis Homogenization of besicovitch type almost periodic functionals , 1992 .

[40]  Irene Fonseca,et al.  A -Quasiconvexity. lower semicontinuity, and young measures , 1999 .

[41]  M. Baake,et al.  Mathematical quasicrystals and the problem of diffraction , 2000 .

[42]  N. D. Bruijn Algebraic theory of Penrose''s non-periodic tilings , 1981 .

[43]  N. Wellander,et al.  Two‐scale cut‐and‐projection convergence; homogenization of quasiperiodic structures , 2018 .

[44]  François Murat Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant , 1981 .

[45]  M. Amar Two-scale convergence and homogenization on BV () , 1998 .

[46]  Stefan Krömer,et al.  Heterogeneous Thin Films: Combining Homogenization and Dimension Reduction with Directors , 2016, SIAM J. Math. Anal..

[47]  Periodic homogenization of integral energies under space-dependent differential constraints , 2016 .

[48]  Luc Tartar,et al.  Compensated compactness and applications to partial differential equations , 1979 .

[49]  C. Castaing,et al.  Convex analysis and measurable multifunctions , 1977 .

[50]  L. Grafakos Classical Fourier Analysis , 2010 .

[51]  Irene Fonseca,et al.  A-QUASICONVEXITY: RELAXATION AND HOMOGENIZATION , 2000 .

[52]  John W. Cahn,et al.  Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .

[53]  Irene Fonseca,et al.  Homogenization of integral energies under periodically oscillating differential constraints , 2015 .

[54]  Multiscale Relaxation of Convex Functionals , 2003 .

[55]  J. Cahn,et al.  Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .