Homogenization of Quasi-Crystalline Functionals via Two-Scale-Cut-and-Project Convergence
暂无分享,去创建一个
Irene Fonseca | Raghavendra Venkatraman | Rita Ferreira | I. Fonseca | Rita Ferreira | R. Venkatraman
[1] N. Wellander,et al. Homogenization of quasiperiodic structures and two-scale cut-and-projection convergence , 2019, 1911.03560.
[2] Stochastic unfolding and homogenization , 2017, 1805.09546.
[3] Yves Meyer,et al. Quasicrystals, Diophantine approximation and algebraic numbers , 1995 .
[4] G. D. Maso,et al. An Introduction to-convergence , 1993 .
[5] Irene Fonseca,et al. Reiterated Homogenization in BV via Multiscale Convergence , 2012, SIAM J. Math. Anal..
[6] Andrea Braides. Almost periodic methods in the theory of homogenization , 1992 .
[7] E. Pan,et al. Three-dimensional nonlocal buckling of composite nanoplates with coated one-dimensional quasicrystal in an elastic medium , 2020, International Journal of Solids and Structures.
[8] P. Damasceno,et al. Computational self-assembly of a one-component icosahedral quasicrystal. , 2015, Nature materials.
[9] I. Fonseca,et al. The limit behavior of a family of variational multiscale problems , 2007 .
[10] Fa Dick,et al. Algebraic theory of Penrose's non-periodic tilings of the plane. I, II : dedicated to G. Pólya , 1981 .
[11] Grégoire Allaire,et al. Multiscale convergence and reiterated homogenisation , 1996, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[12] P. Steinhardt,et al. Quasicrystals: a new class of ordered structures , 1984 .
[13] I. Fonseca,et al. A note on two scale compactness for $p = 1$ , 2015 .
[14] Bernard Dacorogna,et al. Weak Continuity and Weak Lower Semicontinuity of Non-Linear Functionals , 1982 .
[15] I. Gayte,et al. The two-scale convergence method applied to generalized Besicovitch spaces , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[16] Paul D. Bloom,et al. Development of novel polymer/quasicrystal composite materials , 2000 .
[17] S. Kozlov. AVERAGING OF RANDOM OPERATORS , 1980 .
[18] G. Allaire. Homogenization and two-scale convergence , 1992 .
[19] L. Modica,et al. Nonlinear stochastic homogenization and ergodic theory. , 1986 .
[20] G. Nguetseng. A general convergence result for a functional related to the theory of homogenization , 1989 .
[21] D. Nelson,et al. Introduction to Quasicrystals , 1990 .
[22] S. Neukamm. Rigorous Derivation of a Homogenized Bending-Torsion Theory for Inextensible Rods from Three-Dimensional Elasticity , 2012 .
[23] Bernard Dacorogna,et al. Quasiconvexity and relaxation of nonconvex problems in the calculus of variations , 1982 .
[24] R. Penrose. Pentaplexity A Class of Non-Periodic Tilings of the Plane , 1979 .
[25] I. Blech,et al. The microstructure of rapidly solidified Al6Mn , 1985 .
[26] X. Teng,et al. Effect of cooling rates on solidification and microstructure of rapidly solidified Mg_57Zn_37Y_6 quasicrystal alloy , 2015 .
[27] Guy Bouchitté,et al. Homogenization of Dielectric Photonic Quasi Crystals , 2010, Multiscale Model. Simul..
[28] Alicja Klimkowicz,et al. Quaternary Quasicrystal Alloys for Hydrogen Storage Technology , 2020 .
[29] Characterization of the Multiscale Limit Associated with Bounded Sequences in BV , 2011 .
[30] Peter Wall,et al. Two-scale convergence , 2002 .
[31] Hua Zhu,et al. Single-component quasicrystalline nanocrystal superlattices through flexible polygon tiling rule , 2018, Science.
[32] I. Fonseca,et al. Multiple integrals under differential constraints: Two-scale convergence and homogenization , 2010 .
[33] Katz,et al. Quasiperiodic patterns. , 1985, Physical review letters.
[34] M. Morandotti,et al. Homogenization of Functionals with Linear Growth in the Context of $$\mathcal A$$A-quasiconvexity , 2014, 1410.0490.
[35] Jean-Marie Dubois,et al. Quasicrystal–polymer composites for selective laser sintering technology , 2012 .
[36] Doina Cioranescu,et al. Homogenization of nonlinear integrals via the periodic unfolding method , 2004 .
[37] M. Morandotti,et al. HOMOGENIZATION OF FUNCTIONALS WITH LINEAR GROWTH IN THE CONTEXT OF A -QUASICONVEXITY , 2014 .
[38] K. Kamiya,et al. Discovery of superconductivity in quasicrystal , 2018, Nature Communications.
[39] R. D. Arcangelis. Homogenization of besicovitch type almost periodic functionals , 1992 .
[40] Irene Fonseca,et al. A -Quasiconvexity. lower semicontinuity, and young measures , 1999 .
[41] M. Baake,et al. Mathematical quasicrystals and the problem of diffraction , 2000 .
[42] N. D. Bruijn. Algebraic theory of Penrose''s non-periodic tilings , 1981 .
[43] N. Wellander,et al. Two‐scale cut‐and‐projection convergence; homogenization of quasiperiodic structures , 2018 .
[44] François Murat. Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant , 1981 .
[45] M. Amar. Two-scale convergence and homogenization on BV () , 1998 .
[46] Stefan Krömer,et al. Heterogeneous Thin Films: Combining Homogenization and Dimension Reduction with Directors , 2016, SIAM J. Math. Anal..
[47] Periodic homogenization of integral energies under space-dependent differential constraints , 2016 .
[48] Luc Tartar,et al. Compensated compactness and applications to partial differential equations , 1979 .
[49] C. Castaing,et al. Convex analysis and measurable multifunctions , 1977 .
[50] L. Grafakos. Classical Fourier Analysis , 2010 .
[51] Irene Fonseca,et al. A-QUASICONVEXITY: RELAXATION AND HOMOGENIZATION , 2000 .
[52] John W. Cahn,et al. Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .
[53] Irene Fonseca,et al. Homogenization of integral energies under periodically oscillating differential constraints , 2015 .
[54] Multiscale Relaxation of Convex Functionals , 2003 .
[55] J. Cahn,et al. Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .