Supported rhodium oxide nanoparticles as highly active CO oxidation catalysts.

Bigger is not always better: Rhodium metal particles smaller than 2.5 nm are oxidized and stabilized by reducible supports such as ceria under CO oxidation conditions, whereas metal particles larger than 4 nm remain metallic. The very small Rh oxide particles are more active by two orders of magnitude in CO oxidation than Rh metal particles

[1]  M. Muhler,et al.  Kinetics and particle size effects in ethene hydrogenation over supported palladium catalysts at atmospheric pressure , 2009 .

[2]  A. Suzuki,et al.  Time scale and elementary steps of CO-induced disintegration of surface rhodium clusters. , 2003, Angewandte Chemie.

[3]  Michael E. Grass,et al.  A Reactive Oxide Overlayer on Rh Nanoparticles during CO Oxidation and Its Size Dependence Studied by in Situ Ambient Pressure XPS , 2008 .

[4]  H. Freund,et al.  Hydrogenation on metal surfaces: why are nanoparticles more active than single crystals? , 2003, Angewandte Chemie.

[5]  J. Nørskov,et al.  First principles calculations and experimental insight into methane steam reforming over transition metal catalysts , 2008 .

[6]  D. W. Goodman,et al.  Kinetics of carbon monoxide oxidation by oxygen or nitric oxide on rhodium(111) and rhodium(100) single crystals , 1988 .

[7]  Xuan Cheng,et al.  A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation , 2007 .

[8]  H. Freund,et al.  Größenabhängiger Oxidationsmechanismus trägerfixierter Pd-Nanopartikel† , 2006 .

[9]  E. Lundgren,et al.  In situ structure-activity correlation experiments of the ruthenium catalyzed CO oxidation reaction , 2009 .

[10]  J. Gustafson,et al.  Catalytic Activity of the Rh Surface Oxide: CO Oxidation over Rh(111) under Realistic Conditions , 2010 .

[11]  G. Ertl Reactions at surfaces: from atoms to complexity (Nobel Lecture). , 2008, Angewandte Chemie.

[12]  D. Goodman,et al.  New insights into catalytic CO oxidation on Pt-group metals at elevated pressures , 2009 .

[13]  V. Parmon,et al.  Platinum nanoparticles on Al2O3: Correlation between the particle size and activity in total methane oxidation , 2009 .

[14]  Manos Mavrikakis,et al.  Alkali-Stabilized Pt-OHx Species Catalyze Low-Temperature Water-Gas Shift Reactions , 2010, Science.

[15]  Mordecai Shelef,et al.  Twenty-five years after introduction of automotive catalysts: what next? , 2000 .

[16]  H. Freund,et al.  Size-dependent oxidation mechanism of supported Pd nanoparticles. , 2006, Angewandte Chemie.

[17]  J. Flege,et al.  In situ structural imaging of CO oxidation catalysis on oxidized Rh(111) , 2008 .

[18]  V. Prasad,et al.  Correlating particle size and shape of supported Ru/gamma-Al2O3 catalysts with NH3 decomposition activity. , 2009, Journal of the American Chemical Society.

[19]  A. Stierle,et al.  Shape Changes of Supported Rh Nanoparticles During Oxidation and Reduction Cycles , 2008, Science.

[20]  J. Gustafson,et al.  Sensitivity of catalysis to surface structure: The example of CO oxidation on Rh under realistic conditions , 2008 .

[21]  Gabor A. Somorjai,et al.  A reactive oxide overlayer on rhodium nanoparticles during CO oxidation and its size dependence studied by in situ ambient-pressure X-ray photoelectron spectroscopy. , 2008, Angewandte Chemie.

[22]  J. Gustafson,et al.  Structure and catalytic reactivity of Rh oxides , 2009 .

[23]  W. H. Weinberg,et al.  The interaction of oxygen with the Rh(111) surface a , 1979 .

[24]  Maria Flytzani-Stephanopoulos,et al.  On the issue of the deactivation of Au-ceria and Pt-ceria water-gas shift catalysts in practical fuel-cell applications. , 2006, Angewandte Chemie.

[25]  F. Gracia,et al.  In situ FTIR, EXAFS, and activity studies of the effect of crystallite size on silica-supported Pt oxidation catalysts , 2003 .

[26]  G. Ertl Reaktionen an Oberflächen: vom Atomaren zum Komplexen (Nobel‐Vortrag) , 2008 .

[27]  Xue-qing Gong,et al.  A systematic study of CO oxidation on metals and metal oxides: density functional theory calculations. , 2004, Journal of the American Chemical Society.

[28]  J. Frenken,et al.  CO oxidation on Pt(110): scanning tunneling microscopy inside a high-pressure flow reactor. , 2002, Physical review letters.

[29]  Weiming Hua,et al.  New solid superacid catalysts for n-butane isomerization: γ-Al2O3 or SiO2 supported sulfated zirconia , 2000 .

[30]  M. Haruta Catalysis: Gold rush , 2005, Nature.

[31]  B. Hammer,et al.  Structure and reactivity of surface oxides on Pt(110) during catalytic CO oxidation. , 2005, Physical review letters.

[32]  Varga,et al.  Atomic-scale structure and catalytic reactivity of the RuO(2)(110) surface , 2000, Science.

[33]  E. Hensen,et al.  Cyanide leaching of Au/CeO2: highly active gold clusters for 1,3-butadiene hydrogenation. , 2009, Physical chemistry chemical physics : PCCP.

[34]  M. Flytzani-Stephanopoulos,et al.  Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts , 2003, Science.

[35]  Thomas Bligaard,et al.  Trends in the catalytic CO oxidation activity of nanoparticles. , 2008, Angewandte Chemie.

[36]  G. Somorjai,et al.  Colloidally Synthesized Monodisperse Rh Nanoparticles Supported on SBA-15 for Size- and Pretreatment-Dependent Studies of CO Oxidation , 2009 .

[37]  J. Llorca,et al.  Nanofaceted Pd-O sites in Pd-Ce surface superstructures: enhanced activity in catalytic combustion of methane. , 2009, Angewandte Chemie.