KF 18446 PET in the rat brain after quinolinic acid lesion : Comparison with the dopamine receptor imaging

Received March 6, 2002, revision accepted July 29, 2002. Present address: †National Institute of Radiological Sciences, Chiba, Japan; and ††Institute of Biomedical Research and Innovation, Kobe, Japan. For reprint contact: Kiichi Ishiwata, Ph.D., Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1–1, Naka-cho, Itabashi, Tokyo 173–0022, JAPAN. E-mail: ishiwata@pet.tmig.or.jp INTRODUCTION

[1]  S. Stone-Elander,et al.  Preparation of 11C-labelled SCH 23390 for the in vivo study of dopamine D-1 receptors using positron emission tomography. , 1986, International journal of radiation applications and instrumentation. Part A, Applied radiation and isotopes.

[2]  M. Senda,et al.  Evaluation of carbon-11-labeled KF17837: a potential CNS adenosine A2a receptor ligand. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[3]  J. Brotchi,et al.  Quantitative assessment of quinolinic acid-induced striatal toxicity in rats using radioligand binding assays. , 1994, Neurological research.

[4]  F. Tarazi,et al.  Localization of dopamine receptor subtypes in corpus striatum and nucleus accumbens septi of rat brain: comparison of D1-, D2- and D4-like receptors , 1998, Neuroscience.

[5]  J. Noth,et al.  Remote Microglial Activation in the Quinolinic Acid Model of Huntington's Disease , 1993, Experimental Neurology.

[6]  J. Palacios,et al.  Adenosine A2 receptors: Selective localization in the human basal ganglia and alterations with disease , 1991, Neuroscience.

[7]  C. Gerfen,et al.  Dopamine differentially regulates dynorphin, substance P, and enkephalin expression in striatal neurons: in situ hybridization histochemical analysis , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  J. van der Weide,et al.  The effects of kainic acid and 6-hydroxydopamine lesions, metal ions and GTP on in vitro binding of the D-2 dopamine agonist, [3H]N-0437, to striatal membranes. , 1987, European journal of pharmacology.

[9]  M. Levivier,et al.  Time course of the neuroprotective effect of transplantation on quinolinic acid-induced lesions of the striatum , 1995, Neuroscience.

[10]  E. Broussolle,et al.  Contributions of PET and SPECT to the understanding of the pathophysiology of Parkinson’s disease , 2001, Neurophysiologie Clinique/Clinical Neurophysiology.

[11]  S. Synder,et al.  Autoradiographic localization of adenosine receptors in rat brain using [3H]cyclohexyladenosine , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  B. Fredholm,et al.  Further characterization of the binding of the adenosine receptor agonist [3H]CGS 21680 to rat brain using autoradiography , 1995, Neuropharmacology.

[13]  Adriaan A. Lammertsma,et al.  The potential of high-resolution positron emission tomography to monitor striatal dopaminergic function in rat models of disease , 1996, Journal of Neuroscience Methods.

[14]  T. Dunwiddie,et al.  The Role and Regulation of Adenosine in the Central Nervous System , 2022 .

[15]  D. Mash,et al.  Adenosine A2A receptor mRNA expression in Parkinson's disease , 2000, Neuroscience Letters.

[16]  J. Fastbom,et al.  The distribution of adenosine a1 receptors and 5'-nucleotidase in the brain of some commonly used experimental animals , 1987, Neuroscience.

[17]  S. Augood,et al.  Adenosine A2a receptor mRNA is expressed by enkephalin cells but not by somatostatin cells in rat striatum: a co-expression study. , 1994, Brain research. Molecular brain research.

[18]  B B Fredholm,et al.  Distribution of adenosine receptors in the postmortem human brain: An extended autoradiographic study , 1997, Synapse.

[19]  Stoessl Aj,et al.  NEURORECEPTOR IMAGING : NEW DEVELOPMENTS IN PET AND SPECT IMAGING OF NEURORECEPTOR BINDING (INCLUDING DOPAMINE TRANSPORTERS, VESICLE TRANSPORTERS AND POST SYNAPTIC RECEPTOR SITES) , 1998 .

[20]  M. Senda,et al.  Positron emission tomography and ex vivo and in vitro autoradiography studies on dopamine D2-like receptor degeneration in the quinolinic acid-lesioned rat striatum: comparison of [11C]raclopride, [11C]nemonapride and [11C]N-methylspiperone. , 2002, Nuclear medicine and biology.

[21]  B. Ardekani,et al.  A Fully Automatic Multimodality Image Registration Algorithm , 1995, Journal of computer assisted tomography.

[22]  E. Grasbon-Frodl,et al.  Antioxidant treatment protects striatal neurons against excitotoxic insults , 1996, Neuroscience.

[23]  B. Fredholm,et al.  Autoradiographic evidence for G-protein coupled A2-receptors in rat neostriatum using [3H]-CGS 21680 as a ligand , 1990, Naunyn-Schmiedeberg's Archives of Pharmacology.

[24]  J. Fastbom,et al.  Adenosine A1 receptors in the human brain: A quantitative autoradiographic study , 1987, Neuroscience.

[25]  H. Kase New Aspects of Physiological and Pathophysiological Functions of Adenosine A2A Receptor in Basal Ganglia , 2001, Bioscience, biotechnology, and biochemistry.

[26]  Evaluation of iodinated and brominated [11C]styrylxanthine derivatives asin vivo radioligands mapping adenosine A2A receptor in the central nervous system , 2000, Annals of nuclear medicine.

[27]  G. Fagg,et al.  A comparative analysis of the neuroprotective properties of competitive and uncompetitive n-methyl-d-aspartate receptor antagonists in vivo: Implications for the process of excitotoxic degeneration and its therapy , 1993, Neuroscience.

[28]  M. Dragunow,et al.  The pattern of neurodegeneration in Huntington's disease: a comparative study of cannabinoid, dopamine, adenosine and GABAA receptor alterations in the human basal ganglia in Huntington's disease , 2000, Neuroscience.

[29]  M. Senda,et al.  Comparison of three PET dopamine D2-like receptor ligands, [11C]raclopride, [11C]nemonapride and [11C]N-methylspiperone, in rats , 1999, Annals of nuclear medicine.

[30]  D. Graham,et al.  Specific alterations in local cerebral glucose utilization following striatal lesions , 1982, Brain Research.

[31]  M. Toru,et al.  An increase in [ 3 H ] CGS21680 binding in the striatum of postmortem brains of chronic schizophrenics , 1998, Brain Research.

[32]  G Burnstock,et al.  Nomenclature and Classification of Purinoceptors* , 2005 .

[33]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[34]  D. Ingram,et al.  In vivo assessment of adenoviral vector‐mediated gene expression of dopamine D2 receptors in the rat striatum by positron emission tomography , 2002, Synapse.

[35]  B. Bloch,et al.  Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[36]  M. Senda,et al.  An alternative synthesis of [11C]raclopride for routine use , 1999, Annals of nuclear medicine.

[37]  C. Gerfen,et al.  D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. , 1990, Science.

[38]  M. Senda,et al.  Further characterization of a CNS adenosine A2a receptor ligand [11C]KF18446 within vitro autoradiography andin vivo tissue uptake , 2000, Annals of nuclear medicine.

[39]  M. E. Lewis,et al.  Autoradiographic visualization of rat brain adenosine receptors using N6-cyclohexyl [3H]adenosine. , 1981, European journal of pharmacology.

[40]  M. Senda,et al.  Quantitative ex vivo and in vitro receptor autoradiography using 11C-labeled ligands and an imaging plate: a study with a dopamine D2-like receptor ligand [11C]nemonapride. , 1999, Nuclear medicine and biology.

[41]  J. Joseph,et al.  Effect of aging on vulnerability of striatal D1 And D2 dopamine receptor-containing neurons to kainic acid , 1997, Brain Research.

[42]  E. Wolters,et al.  IBZM- and CIT-SPECT of the dopaminergic system in parkinsonism. , 1997, Journal of neural transmission. Supplementum.

[43]  H Toyama,et al.  A PET-MRI registration technique for PET studies of the rat brain. , 2000, Nuclear medicine and biology.

[44]  T Ido,et al.  Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. , 1992, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[45]  H Toyama,et al.  Synthesis and preliminary evaluation of [11C]KF17837, a selective adenosine A2A antagonist. , 1996, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[46]  M. Senda,et al.  11C-labeled KF18446: a potential central nervous system adenosine A2a receptor ligand. , 2000, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[47]  M. Kiyosawa,et al.  Carbon-11-labeled KF21213: a highly selective ligand for mapping CNS adenosine A(2A) receptors with positron emission tomography. , 2000, Nuclear medicine and biology.

[48]  Helmut L. Haas,et al.  Functions of neuronal adenosine receptors , 2000, Naunyn-Schmiedeberg's Archives of Pharmacology.

[49]  S. Schiffmann,et al.  Striatal Restricted Adenosine A2 Receptor (RDC8) Is Expressed by Enkephalin but Not by Substance P Neurons: An In Situ Hybridization Histochemistry Study , 1991, Journal of neurochemistry.

[50]  G. Wooten,et al.  Differential localization of A2a adenosine receptor mRNA with D1 and D2 dopamine receptor mRNA in striatal output pathways following a selective lesion of striatonigral neurons , 1993, Brain Research.