Edge-preserving image denoising and estimation of discontinuous surfaces

In this paper, we are interested in the problem of estimating a discontinuous surface from noisy data. A novel procedure for this problem is proposed based on local linear kernel smoothing, in which local neighborhoods are adapted to the local smoothness of the surface measured by the observed data. The procedure can therefore remove noise correctly in continuity regions of the surface and preserve discontinuities at the same time. Since an image can be regarded as a surface of the image intensity function and such a surface has discontinuities at the outlines of objects, this procedure can be applied directly to image denoising. Numerical studies show that it works well in applications, compared to some existing procedures

[1]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[2]  Martin Vetterli,et al.  Spatially adaptive wavelet thresholding with context modeling for image denoising , 2000, IEEE Trans. Image Process..

[3]  Dorin Comaniciu,et al.  An Algorithm for Data-Driven Bandwidth Selection , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Philippe Saint-Marc,et al.  Adaptive Smoothing: A General Tool for Early Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Jeffrey A. Fessler,et al.  Exact distribution of edge-preserving MAP estimators for linear signal models with Gaussian measurement noise , 2000, IEEE Trans. Image Process..

[6]  J. Polzehl,et al.  Adaptive weights smoothing with applications to image restoration , 1998 .

[7]  Michael Unser,et al.  Variational image reconstruction from arbitrarily spaced samples: a fast multiresolution spline solution , 2005, IEEE Transactions on Image Processing.

[8]  Robert A. Lordo Image Processing and Jump Regression Analysis , 2006, Technometrics.

[9]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[10]  Achim Hummel,et al.  Representations Based on Zero-Crossing in Scale-Space-M , 2018, CVPR 1986.

[11]  Stan Z. Li,et al.  On Discontinuity-Adaptive Smoothness Priors in Computer Vision , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[13]  Peihua Qiu Image Processing and Jump Regression Analysis: Qiu/Image , 2005 .

[14]  Thomas S. Huang,et al.  Two-Dimensional Digital Signal Processing I , 1981 .

[15]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Peihua Qiu,et al.  Discontinuous regression surfaces fitting , 1998 .

[17]  David J. Kriegman,et al.  On Recognizing and Positioning Curved 3-D Objects from Image Contours , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  M. Braga,et al.  Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[19]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[20]  Ronald W. Schafer,et al.  Two-dimensional digital signal processing , 1976 .

[21]  Michael J. Black,et al.  On the unification of line processes, outlier rejection, and robust statistics with applications in early vision , 1996, International Journal of Computer Vision.

[22]  Martin Vetterli,et al.  Spatially adaptive wavelet thresholding with context modeling for image denoising , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[23]  Mariano Rivera,et al.  Gauss-Markov Measure Field Models for Low-Level Vision , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Tomaso A. Poggio Early vision: From computational structure to algorithms and parallel hardware , 1985, Comput. Vis. Graph. Image Process..

[25]  Bernard W. Silverman,et al.  The discrete wavelet transform in S , 1994 .

[26]  M.A. Garcia Efficient surface reconstruction from scattered points through geometric data fusion , 1994, Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems.

[27]  Thomas Strohmer,et al.  Computationally attractive reconstruction of bandlimited images from irregular samples , 1997, IEEE Trans. Image Process..

[28]  Moncef Gabbouj,et al.  Center weighted median filters: Some properties and their applications in image processing , 1994, Signal Process..

[29]  Robert D. Nowak,et al.  Wavelet-based image estimation: an empirical Bayes approach using Jeffrey's noninformative prior , 2001, IEEE Trans. Image Process..

[30]  John P. Moussouris Gibbs and Markov random systems with constraints , 1974 .

[31]  Brian G. Schunck,et al.  A Two-Stage Algorithm for Discontinuity-Preserving Surface Reconstruction , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Xiaoming Huo,et al.  Beamlets and Multiscale Image Analysis , 2002 .

[33]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[34]  Robert Hummel,et al.  Reconstructions from zero crossings in scale space , 1989, IEEE Trans. Acoust. Speech Signal Process..

[35]  Peihua Qiu,et al.  The Local Piecewisely Linear Kernel Smoothing Procedure for Fitting Jump Regression Surfaces , 2004, Technometrics.

[36]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[37]  D. R. K. Brownrigg,et al.  The weighted median filter , 1984, CACM.

[38]  F. Chabat,et al.  A corner orientation detector , 1999, Image Vis. Comput..

[39]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[40]  Guang-Zhong Yang,et al.  Structure adaptive anisotropic image filtering , 1996, Image Vis. Comput..

[41]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[42]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Federico Girosi,et al.  Parallel and Deterministic Algorithms from MRFs: Surface Reconstruction , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[45]  G. Wise,et al.  A theoretical analysis of the properties of median filters , 1981 .

[46]  Edward J. Delp,et al.  Viewpoint Invariant Recovery of Visual Surfaces from Sparse Data , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[48]  June-Ho Yi,et al.  Discontinuity-Preserving and Viewpoint Invariant Reconstruction of Visible Surfaces Using a First Order Regularization , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Mariano Rivera,et al.  Adaptive Rest Condition Potentials: First and Second Order Edge-Preserving Regularization , 2002, Comput. Vis. Image Underst..

[50]  Danny Barash,et al.  A Fundamental Relationship between Bilateral Filtering, Adaptive Smoothing, and the Nonlinear Diffusion Equation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  Edward J. Delp,et al.  Viewpoint invariant recovery of visual surfaces from sparse data , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[52]  David J. Kriegman,et al.  Parameterized Families of Polynomials for Bounded Algebraic Curve and Surface Fitting , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[54]  Dorin Comaniciu,et al.  A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift , 2004, Image Vis. Comput..

[55]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[56]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[57]  J. Marron,et al.  Edge-Preserving Smoothers for Image Processing , 1998 .

[58]  Thomas S. Huang,et al.  The Effect of Median Filtering on Edge Estimation and Detection , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Moncef Gabbouj,et al.  Median Based Idempotent filters , 1991, J. Circuits Syst. Comput..

[60]  Michael J. Black,et al.  On the unification of line processes , 1996 .

[61]  Fred Godtliebsen,et al.  Statistical methods for noisy images with discontinuities , 1994 .

[62]  Peihua Qiu,et al.  Jump-Preserving Regression and Smoothing using Local Linear Fitting: A Compromise , 2007 .