From Simple Management of Defects to Knowledge Discovery to Optimize Maintenance

To ensure the quality of a final product, processing and traceability of defects which occur during its industrial manufacturing process has become an essential activity. Indeed, management of information relative to defects may represent up to 80% of the final product information volume. Therefore, the processing of this mass of information provides a real value-added to, for example, understand scrapping reasons, reduce or even remove this scrapping and anticipate manufacturing issues. A parallel can be drawn with software defects and the numerous follow-up systems for bugs management activities. We can name IBM Rational Clearquest

[1]  Eugene Levner,et al.  Total quality management of a production-maintenance system: A network approach , 1998 .

[2]  Christopher Leckie,et al.  An Evaluation of Criteria for Measuring the Quality of Clusters , 1999, IJCAI.

[3]  E. Burton Swanson,et al.  The dimensions of maintenance , 1976, ICSE '76.

[4]  Antoine Despujols,et al.  Approche fonctionnelle de la maintenance , 2004, Conception et Production.

[5]  Chris A. McMahon,et al.  The generation of faceted classification schemes for use in the organisation of engineering design documents , 2008, Int. J. Inf. Manag..

[6]  Sandrine Blazy,et al.  Software maintenance: an analysis of industrial needs and constraints , 1992, Proceedings Conference on Software Maintenance 1992.

[7]  AbdiHervé,et al.  Principal Component Analysis , 2010, Essentials of Pattern Recognition.

[8]  Olatz Arbelaitz,et al.  SIHC: A Stable Incremental Hierarchical Clustering Algorithm , 2009, ICEIS.

[9]  Serge Barros Analyse a priori des consequences de la modification de systemes logiciels : de la theorie a la pratique , 1997 .

[10]  L. L. He,et al.  A GENERAL INCREMENTAL HIERARCHICAL CLUSTERING METHOD , 2006 .

[11]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[12]  Stephen E. Robertson,et al.  Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..

[13]  H. Abdi,et al.  Principal component analysis , 2010 .

[14]  Shad Dowlatshahi The role of industrial maintenance in the maquiladora industry: An empirical analysis , 2008 .

[15]  G. Dunteman Principal Components Analysis , 1989 .

[16]  Yehuda Lindell,et al.  Text Mining at the Term Level , 1998, PKDD.

[17]  M. F. Porter,et al.  An algorithm for suffix stripping , 1997 .

[18]  Myriam Lewkowicz,et al.  Annotations: A Way to Capture Experience , 2006, KES.

[19]  J. S. Khamba,et al.  Total productive maintenance: literature review and directions , 2008 .

[20]  I. Alsyouf The role of maintenance in improving companies' productivity and profitability , 2002 .

[21]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[22]  Laurent Candillier,et al.  Contextualisation, Visualisation et Evaluation en Apprentissage Non Supervisé , 2006 .

[23]  Chris A. McMahon,et al.  From Faceted Classification to Knowledge Discovery of Semi-structured Text Records , 2009, Foundations of Computational Intelligence.

[24]  Pauline V. Angione,et al.  On the equivalence of boolean and weighted searching based on the convertibility of query forms , 1975, J. Am. Soc. Inf. Sci..

[25]  Liliane Pintelon,et al.  Maintenance concept development: A case study , 2004 .

[26]  Peter Freeman,et al.  Classifying Software for Reusability , 1987, IEEE Software.

[27]  Max Chevalier,et al.  Social validation of collective annotations: Definition and experiment , 2010 .

[28]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[29]  Felix Naumann,et al.  Data fusion , 2009, CSUR.

[30]  Victor J. Rayward-Smith,et al.  Internal quality measures for clustering in metric spaces , 2008, Int. J. Bus. Intell. Data Min..

[31]  Kari Komonen,et al.  A cost model of industrial maintenance for profitability analysis and benchmarking , 2002 .

[32]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .