Indole-3-acetic acid in microbial and microorganism-plant signaling.

Diverse bacterial species possess the ability to produce the auxin phytohormone indole-3-acetic acid (IAA). Different biosynthesis pathways have been identified and redundancy for IAA biosynthesis is widespread among plant-associated bacteria. Interactions between IAA-producing bacteria and plants lead to diverse outcomes on the plant side, varying from pathogenesis to phyto-stimulation. Reviewing the role of bacterial IAA in different microorganism-plant interactions highlights the fact that bacteria use this phytohormone to interact with plants as part of their colonization strategy, including phyto-stimulation and circumvention of basal plant defense mechanisms. Moreover, several recent reports indicate that IAA can also be a signaling molecule in bacteria and therefore can have a direct effect on bacterial physiology. This review discusses past and recent data, and emerging views on IAA, a well-known phytohormone, as a microbial metabolic and signaling molecule.

[1]  Y. Okon,et al.  The development of Azospirillum as a commercial inoculant for improving crop yields. , 1995, Biotechnology advances.

[2]  J. Guern,et al.  In Plant Protoplasts, the Spontaneous Expression of Defense Reactions and the Responsiveness to Exogenous Elicitors Are under Auxin Control. , 1991, Plant physiology.

[3]  J. Dullaart,et al.  Presence of gibberellin-like substances and their possible role in auxin bioproduction in root nodules and roots of Lupinus luteus L. , 1970 .

[4]  S. He,et al.  Type III protein secretion in Pseudomonas syringae. , 2003, Microbes and infection.

[5]  S. Somerville,et al.  Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Sheng Yang He,et al.  Type III protein secretion mechanism in mammalian and plant pathogens. , 2004, Biochimica et biophysica acta.

[7]  B. Rolfe,et al.  Azospirillum–Rhizobium interaction leading to a plant growth stimulation without nodule formation , 1985 .

[8]  P. Mcmanus,et al.  Indole-3-acetic Acid-producing bacteria are associated with cranberry stem gall. , 2004, Phytopathology.

[9]  Hajime Kobayashi,et al.  Flavonoids, NodD1, NodD2, and nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. , 2004, Molecular plant-microbe interactions : MPMI.

[10]  A. Matthysse,et al.  Inhibition by Agrobacterium tumefaciens and Pseudomonas savastanoi of development of the hypersensitive response elicited by Pseudomonas syringae pv. phaseolicola , 1990, Journal of bacteriology.

[11]  M. Estelle,et al.  The F-box protein TIR1 is an auxin receptor , 2005, Nature.

[12]  M. Lambrecht,et al.  The ipdC promoter auxin‐responsive element of Azospirillum brasilense, a prokaryotic ancestral form of the plant AuxRE? , 1999, Molecular microbiology.

[13]  L. Nussaume,et al.  Tales from the underground: molecular plant–rhizobacteria interactions , 2003 .

[14]  E. Weiler,et al.  Cloning and expression of an Arabidopsis nitrilase which can convert indole-3-acetonitrile to the plant hormone, indole-3-acetic acid. , 1992, European journal of biochemistry.

[15]  Jia Liu,et al.  The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  G. Holguin,et al.  Azospirillum – plant relationships: environmental and physiological advances (1990–1996) , 1997 .

[17]  John Gutknecht,et al.  Transport of auxin (indoleacetic acid) through lipid bilayer membranes , 1980, The Journal of Membrane Biology.

[18]  G. Roberts,et al.  The interactions of Escherichia coli trp repressor with tryptophan and with an operator oligonucleotide. NMR studies using selectively 15N-labelled protein. , 1994, European journal of biochemistry.

[19]  B. Bergman,et al.  Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria , 2002, Planta.

[20]  E. Nester,et al.  Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[21]  P. Zambryski Chronicles from the Agrobacterium-plant cell DNA transfer story , 1992 .

[22]  S. Lindow,et al.  Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola , 1996, Applied and environmental microbiology.

[23]  V. Sperandio,et al.  Quorum sensing in Escherichia coli and Salmonella. , 2006, International journal of medical microbiology : IJMM.

[24]  G. Fink,et al.  Origins of variation in the fungal cell surface , 2004, Nature Reviews Microbiology.

[25]  K. David,et al.  A short history of auxin-binding proteins , 2002, Plant Molecular Biology.

[26]  M. Lambrecht,et al.  Indole-3-acetic acid biosynthesis in Azospirillum brasilense , 1997 .

[27]  J. Perley,et al.  On the ability of Taphrina deformans to produce indoleacetic acid from tryptophan by way of tryptamine. , 1966, Plant physiology.

[28]  R. Rabus Functional genomics of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1 , 2005, Applied Microbiology and Biotechnology.

[29]  E. Shiner,et al.  Inter-kingdom signaling: deciphering the language of acyl homoserine lactones. , 2005, FEMS microbiology reviews.

[30]  K. Bennett,et al.  The power of movement in plants. , 1998, Trends in ecology & evolution.

[31]  P. Zambryski,et al.  The transfer of DNA from agrobacterium tumefaciens into plants: a feast of fundamental insights. , 2000, The Plant journal : for cell and molecular biology.

[32]  V. Schaefer A METHOD FOR MAKING SNOWFLAKE REPLICAS. , 1941, Science.

[33]  P. S. Basu,et al.  News & Notes Indole Acetic Acid and Its Metabolism in Root Nodules of a Monocotyledonous Tree Roystonea regia , 1998, Current Microbiology.

[34]  M. Kobayashi,et al.  Occurrence of enzymes involved in biosynthesis of indole-3-acetic acid from indole-3-acetonitrile in plant-associated bacteria, Agrobacterium and Rhizobium. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[35]  S. May,et al.  Expression studies on AUX1-like genes in Medicago truncatula suggest that auxin is required at two steps in early nodule development. , 2001, Molecular plant-microbe interactions : MPMI.

[36]  J. Vanderleyden,et al.  Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat , 2004, Plant and Soil.

[37]  Bogumil J. Karas,et al.  A Cytokinin Perception Mutant Colonized by Rhizobium in the Absence of Nodule Organogenesis , 2007, Science.

[38]  H. Yamada,et al.  Nitrilase in biosynthesis of the plant hormone indole-3-acetic acid from indole-3-acetonitrile: cloning of the Alcaligenes gene and site-directed mutagenesis of cysteine residues. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[39]  D. Gross,et al.  Physical and functional analyses of the syrA and syrB genes involved in syringomycin production by Pseudomonas syringae pv. syringae , 1988, Journal of bacteriology.

[40]  P. S. Basu,et al.  Production and metabolism of indole acetic acid in roots and root nodules of Phaseolus mungo. , 2006, Microbiological research.

[41]  P. Mazzafera,et al.  Indole‐3‐acetic acid biosynthesis by Xanthomonas axonopodis pv. citri is increased in the presence of plant leaf extracts , 1998 .

[42]  M. Lambrecht,et al.  Auxins Upregulate Expression of the Indole-3-Pyruvate Decarboxylase Gene in Azospirillum brasilense , 1999, Journal of bacteriology.

[43]  T. Kosuge,et al.  Tryptophan and indoleacetic acid transport in the olive and oleander knot organism pseudomonas savastanoi (E.F. Smith) Stevens. , 1972, Journal of general microbiology.

[44]  V. Eggers Hyperauxiny in Crown Gall of Tomato , 1941, Botanical Gazette.

[45]  Thomas K. Wood,et al.  YliH (BssR) and YceP (BssS) Regulate Escherichia coli K-12 Biofilm Formation by Influencing Cell Signaling , 2006, Applied and Environmental Microbiology.

[46]  J. Vanderleyden,et al.  Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway , 1993 .

[47]  L. V. Kravchenko,et al.  The Effect of Tryptophan Present in Plant Root Exudates on the Phytostimulating Activity of Rhizobacteria , 2004, Microbiology.

[48]  J. Ohlrogge,et al.  A new set of Arabidopsis expressed sequence tags from developing seeds. The metabolic pathway from carbohydrates to seed oil. , 2000, Plant physiology.

[49]  M. Zupancic,et al.  Nicotinic Acid Limitation Regulates Silencing of Candida Adhesins During UTI , 2005, Science.

[50]  M. Lambrecht,et al.  Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. , 2000, Trends in microbiology.

[51]  R. Aloni,et al.  Comparative anatomy of gall development on Gypsophila paniculata induced by bacteria with different mechanisms of pathogenicity , 2006, Planta.

[52]  R. Carbó-Dorca,et al.  Unrevealed structural requirements for auxin-like molecules by theoretical and experimental evidences. , 2007, Phytochemistry.

[53]  F. Meins,et al.  Regulation of a plant pathogenesis-related enzyme: Inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[54]  M. A. Venis,et al.  Auxin Receptors and Auxin Binding Proteins , 1995 .

[55]  C. Patten,et al.  Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. , 2002, Canadian journal of microbiology.

[56]  H. V. Van Onckelen,et al.  Catabolism of indole-3-acetic acid and 4- and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum , 1995, Journal of bacteriology.

[57]  E. Libbert,et al.  Pathways of IAA Production from Tryptophan by Plants and by Their Epiphytic Bacteria: A Comparison , 1970 .

[58]  J. Vanderleyden,et al.  Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. , 2000, FEMS microbiology reviews.

[59]  I. Blilou,et al.  The PIN auxin efflux facilitators: evolutionary and functional perspectives. , 2005, Trends in plant science.

[60]  J. Vanderleyden,et al.  Molecular cloning and sequence analysis of an Azospirilium brasilense indole-3-pyruvate decarboxylase gene , 1994, Molecular and General Genetics MGG.

[61]  Malcolm J Bennett,et al.  Auxin transport: a field in flux. , 2006, Trends in plant science.

[62]  S. Tabata,et al.  A Gain-of-Function Mutation in a Cytokinin Receptor Triggers Spontaneous Root Nodule Organogenesis , 2007, Science.

[63]  E. Weiler,et al.  Molecular characterization of two cloned nitrilases from Arabidopsis thaliana: key enzymes in biosynthesis of the plant hormone indole-3-acetic acid. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[64]  L. Nussaume,et al.  Utilization of mutants to analyze the interaction between Arabidopsis thaliana and its naturally root-associated Pseudomonas , 2001, Planta.

[65]  A. Murphy,et al.  Arabidopsis H+-PPase AVP1 Regulates Auxin-Mediated Organ Development , 2005, Science.

[66]  R. Onodera,et al.  Degradation of tryptophan and related indolic compounds by ruminal bacteria, protozoa and their mixture in vitro , 2003, Amino Acids.

[67]  Y. Okon,et al.  Induction of indole-3-acetic acid synthesis and possible toxicity of tryptophan in Azospirillum brasilence Sp7 , 1992 .

[68]  S. Takami,et al.  Novel 2,4-Dichlorophenoxyacetic Acid Degradation Genes from Oligotrophic Bradyrhizobium sp. Strain HW13 Isolated from a Pristine Environment , 2002, Journal of bacteriology.

[69]  B. Bartel,et al.  Auxin: regulation, action, and interaction. , 2005, Annals of botany.

[70]  S. Jacquet,et al.  Auxin production is a common feature of most pathovars of Pseudomonas syringae. , 1998, Molecular plant-microbe interactions : MPMI.

[71]  H. Spaink,et al.  Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. , 1998, The Plant journal : for cell and molecular biology.

[72]  J. Vanderleyden,et al.  Synthesis of phytohormones by plant-associated bacteria. , 1995, Critical reviews in microbiology.

[73]  S. Sprunck,et al.  Indole-3-lactic acid is a weak auxin analogue but not an anti-auxin , 1995, Journal of Plant Growth Regulation.

[74]  G. Macfarlane,et al.  Formation of Phenolic and Indolic Compounds by Anaerobic Bacteria in the Human Large Intestine , 1997, Microbial Ecology.

[75]  Y. Gafni,et al.  Characteristics in tissue culture of hyperplasias induced by Erwinia herbicola pathovar gypsophilae , 1989 .

[76]  S. Chisholm,et al.  Host-Microbe Interactions: Shaping the Evolution of the Plant Immune Response , 2022 .

[77]  J. V. Van Impe,et al.  Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. , 2005, FEMS microbiology letters.

[78]  R. Aloni,et al.  The three-dimensional structure of vascular tissues in Agrobacterium tumefaciens-induced crown galls and in the host stems of Ricinus communis L. , 1995, Planta.

[79]  J. Cohen,et al.  Indole-3-acetic acid protein conjugates: novel players in auxin homeostasis. , 2006, Plant biology.

[80]  B. Rolfe,et al.  Phytohormones, Rhizobium Mutants, and Nodulation in Legumes : III. Auxin Metabolism in Effective and Ineffective Pea Root Nodules. , 1983, Plant physiology.

[81]  S. Lindow,et al.  Utilization of the Plant Hormone Indole-3-Acetic Acid for Growth by Pseudomonas putida Strain 1290 , 2005, Applied and Environmental Microbiology.

[82]  B. Glick,et al.  A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria , 1998, Journal of theoretical biology.

[83]  Jonathan D. G. Jones,et al.  A Plant miRNA Contributes to Antibacterial Resistance by Repressing Auxin Signaling , 2006, Science.

[84]  T. Adachi,et al.  Molecular cloning of the gene for indolepyruvate decarboxylase from Enterobacter cloacae , 1991, Molecular and General Genetics MGG.

[85]  Jonathan D. G. Jones,et al.  The plant immune system , 2006, Nature.

[86]  B. Jochimsen,et al.  Identification of enzymes involved in indole-3-acetic acid degradation , 2004, Plant and Soil.

[87]  J. Vanderleyden,et al.  Auxin Signaling in Plant Defense , 2006, Science.

[88]  Christopher D Town,et al.  Development and evaluation of an Arabidopsis whole genome Affymetrix probe array. , 2004, The Plant journal : for cell and molecular biology.

[89]  S. Lindow,et al.  Environmental signals modulate the expression of an indole-3-acetic acid biosynthetic gene in Erwinia herbicola , 1997 .

[90]  D. Crosby,et al.  Indole‐3‐acetic Acid , 2003 .

[91]  O. N. Allen,et al.  PSEUDONODULATION OF LEGUMINOUS PLANTS INDUCED BY 2‐BROMO‐3,5‐DICHLOROBENZOIC ACID , 1953 .

[92]  D. Haas,et al.  Indole-3-acetic acid (IAA) synthesis in the biocontrol strain CHA0 of Pseudomonas fluorescens: role of tryptophan side chain oxidase. , 1991, Journal of general microbiology.

[93]  Jeffery B. Jones,et al.  Susceptible to intolerance--a range of hormonal actions in a susceptible Arabidopsis pathogen response. , 2003, The Plant journal : for cell and molecular biology.

[94]  F. Kögl.,et al.  Hetero-auxin als Stoffwechselprodukt niederer pflanzlicher Organismen. Isolierung aus Hefe. 13. Mitteilung über pflanzliche Wachstumsstoffe. , 1934 .

[95]  E. Weiler,et al.  Molecular cloning and characterization of an amidase from Arabidopsis thaliana capable of converting indole-3-acetamide into the plant growth hormone, indole-3-acetic acid. , 2003, Phytochemistry.

[96]  B R Glick,et al.  Bacterial biosynthesis of indole-3-acetic acid. , 1996, Canadian journal of microbiology.

[97]  B. Glick Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. , 2005, FEMS microbiology letters.

[98]  A. Müller,et al.  Indolic constituents and indole-3-acetic acid biosynthesis in the wild-type and a tryptophan auxotroph mutant of Arabidopsis thaliana , 2000, Planta.

[99]  Y. Okon,et al.  Tryptophan conversion to indole-3-acetic acid via indole-3-acetamide in Azospirillum brasilense Sp7 , 1993 .

[100]  G. Felix,et al.  Hormonal regulation of β1,3‐glucanase messenger RNA levels in cultured tobacco tissues , 1985, The EMBO journal.

[101]  A. Fleming Plant signalling: the inexorable rise of auxin. , 2006, Trends in cell biology.

[102]  R. Dickstein,et al.  The Auxin Transport Inhibitor N-(1-Naphthyl)phthalamic Acid Elicits Pseudonodules on Nonnodulating Mutants of White Sweetclover , 1996, Plant physiology.

[103]  N. L. Glass,et al.  Transcriptional analysis of the , 1996 .

[104]  R. Onodera,et al.  Synthesis of phenylalanine and production of other related compounds from phenylpyruvic acid and phenylacetic acid by ruminal bacteria, protozoa, and their mixture in vitro. , 1997, The Journal of general and applied microbiology.

[105]  Sheng Yang He,et al.  Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. , 2006, The Plant journal : for cell and molecular biology.

[106]  Y. Mino Studies on the destruction of indole-3-acetic acid by a species of Arthrobacter IV. Decomposition products , 1970 .

[107]  Jane Glazebrook,et al.  The transcriptome of rhizobacteria-induced systemic resistance in arabidopsis. , 2004, Molecular plant-microbe interactions : MPMI.

[108]  Massimo Pandolfo,et al.  Molecular Basis , 2022 .

[109]  P. Rather,et al.  Indole Can Act as an Extracellular Signal inEscherichia coli , 2001, Journal of bacteriology.

[110]  M. Piotrowski,et al.  The Arabidopsis thaliana Isogene NIT4 and Its Orthologs in Tobacco Encode β-Cyano-l-alanine Hydratase/Nitrilase* , 2001, The Journal of Biological Chemistry.

[111]  B. Jochimsen,et al.  Oxygen-dependent catabolism of indole-3-acetic acid in Bradyrhizobium japonicum , 1991, Journal of bacteriology.

[112]  D. Vereecke,et al.  Biosynthesis of Auxin by the Gram-Positive Phytopathogen Rhodococcus fascians Is Controlled by Compounds Specific to Infected Plant Tissues , 2005, Applied and Environmental Microbiology.

[113]  Bernard R. Glick,et al.  Isolation and Characterization of Mutants of the Plant Growth-Promoting Rhizobacterium Pseudomonas putida GR12-2 That Overproduce Indoleacetic Acid , 1996, Current Microbiology.

[114]  D. Summers,et al.  Indole signalling contributes to the stable maintenance of Escherichia coli multicopy plasmids , 2007, Molecular microbiology.

[115]  R. Bandurski,et al.  Chemistry and Physiology of the Bound Auxins , 1982 .

[116]  B. Glick,et al.  Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and UW4. , 2001, Canadian journal of microbiology.

[117]  H. Oyaizu,et al.  Indole-3-Acetic Acid Production in Pseudomonas fluorescens HP72 and Its Association with Suppression of Creeping Bentgrass Brown Patch , 2003, Current Microbiology.

[118]  J. Chory,et al.  A role for flavin monooxygenase-like enzymes in auxin biosynthesis. , 2001, Science.

[119]  Z. Klement Chapter 8 – Hypersensitivity , 1982 .

[120]  S. Lindow,et al.  Heterogeneous transcription of an indoleacetic acid biosynthetic gene in Erwinia herbicola on plant surfaces , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[121]  W. Zimmer,et al.  Identification and Isolation of the Indole-3-Pyruvate Decarboxylase Gene from Azospirillum brasilense Sp7: Sequencing and Functional Analysis of the Gene Locus , 1998, Current Microbiology.

[122]  V. V. Kochetkov,et al.  Growth promotion of blackcurrant softwood cuttings by recombinant strain Pseudomonas fluorescens BSP53a synthesizing an increased amount of indole-3-acetic acid , 1993 .

[123]  Bernard R. Glick,et al.  Role of Pseudomonas putida Indoleacetic Acid in Development of the Host Plant Root System , 2002, Applied and Environmental Microbiology.

[124]  A. Ibekwe,et al.  Global Effect of Indole-3-Acetic Acid Biosynthesis on Multiple Virulence Factors of Erwinia chrysanthemi 3937 , 2006, Applied and Environmental Microbiology.

[125]  H. Nakayashiki,et al.  Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. , 2005, Molecular plant-microbe interactions : MPMI.

[126]  Michael Kube,et al.  The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1 , 2004, Archives of Microbiology.

[127]  H. Gruen Auxins and Fungi , 1959 .

[128]  Benoît Jaillard,et al.  Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review , 2004, Plant and Soil.

[129]  G. Fink,et al.  The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[130]  K. Watanabe,et al.  Molecular cloning of a gene for indole-3-acetamide hydrolase from Bradyrhizobium japonicum , 1989, Journal of bacteriology.

[131]  F. White,et al.  A mutation in the indole-3-acetic acid biosynthesis pathway of Pseudomonas syringae pv. syringae affects growth in Phaseolus vulgaris and syringomycin production , 1994, Journal of bacteriology.

[132]  J. B. Reid,et al.  Defective Long-Distance Auxin Transport Regulation in the Medicago truncatula super numeric nodules Mutant1[W] , 2006, Plant Physiology.

[133]  A. Murphy,et al.  The ABC of auxin transport: The role of p‐glycoproteins in plant development , 2006, FEBS letters.

[134]  S. Long,et al.  A dual-genome Symbiosis Chip for coordinate study of signal exchange and development in a prokaryote-host interaction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[135]  K. Ochi,et al.  Identification of the bacterial alarmone guanosine 5′-diphosphate 3′-diphosphate (ppGpp) in plants , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[136]  C. W. Parker,et al.  Phytohormones,Rhizobium mutants, and nodulation in legumes. VII. Identification and quantification of cytokinins in effective and ineffective pea root nodules using radioimmunoassay , 1987, Journal of Plant Growth Regulation.

[137]  W. Hunter Indole‐3‐acetic acid production by bacteroids from soybean root nodules , 1989 .

[138]  Dieter Haas,et al.  Regulation of antibiotic production in root-colonizing Peudomonas spp. and relevance for biological control of plant disease. , 2003, Annual review of phytopathology.

[139]  J. Kigel,et al.  Promotion of nod Gene Inducers and Nodulation in Common Bean (Phaseolus vulgaris) Roots Inoculated with Azospirillum brasilense Cd , 1996, Applied and environmental microbiology.

[140]  M. H. Proctor Bacterial Dissimilation of Indoleacetic Acid: a New Route of Breakdown of the Indole Nucleus , 1958, Nature.

[141]  H. Spaink,et al.  Auxin distribution in Lotus japonicus during root nodule development , 2003, Plant Molecular Biology.

[142]  J. Schell,et al.  Stimulation of indole‐3‐acetic acid production in Rhizobium by flavonoids , 1991, FEBS letters.

[143]  A. C. Braun,et al.  CROWN GALL PRODUCTION BY BACTERIA-FREE TUMOR TISSUES. , 1941, Science.

[144]  Young Cheol Kim,et al.  Production of Indole-3-Acetic Acid in the Plant-Beneficial Strain Pseudomonas chlororaphis O6 Is Negatively Regulated by the Global Sensor Kinase GacS , 2006, Current Microbiology.

[145]  P. Martín,et al.  Indoleacetic acid production by the rhizosphere bacterium Azospirillum brasilense Cd under in vitro conditions , 1993 .

[146]  M. Zuck,et al.  Genetic organization of the hrp gene cluster and dspAE/BF operon in Erwinia herbicola pv. gypsophilae. , 2001, Molecular plant-microbe interactions : MPMI.

[147]  M. Estelle,et al.  Auxin receptors: a new role for F-box proteins. , 2006, Current opinion in cell biology.

[148]  C. Elmerich,et al.  MICROBIAL PRODUCTION OF PLANT HORMONES. , 2007 .

[149]  H. Yamada,et al.  A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3. Purification and characterization. , 1990, European journal of biochemistry.

[150]  W. Kwolek,et al.  Stimulated nodulation of soybeans by Rhizobium japonicum mutant (B-14075) that catabolizes the conversion of tryptophan to indol-3yl-acetic acid , 1985 .

[151]  Shihui Yang,et al.  Genome-wide identification of plant-upregulated genes of Erwinia chrysanthemi 3937 using a GFP-based IVET leaf array. , 2004, Molecular plant-microbe interactions : MPMI.

[152]  Ottoline Leyser,et al.  The Arabidopsis F-box protein TIR1 is an auxin receptor , 2005, Nature.

[153]  Y. Gafni,et al.  Cloning and characterization of iaaM and iaaH from Erwinia herbicola pathovar gypsophilae , 1993 .

[154]  J. Bunt Blue-Green Algae: Isolation of Bacteria-free Cultures from Hormogone-producing Blue-Green Algae , 1961, Nature.

[155]  Mahavir Singh,et al.  Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid , 1983 .

[156]  J. Tumlinson,et al.  Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[157]  J. Leveau,et al.  The tfdK Gene Product Facilitates Uptake of 2,4-Dichlorophenoxyacetate by Ralstonia eutrophaJMP134(pJP4) , 1998, Journal of bacteriology.

[158]  Klaus Palme,et al.  Auxin in action: signalling, transport and the control of plant growth and development , 2006, Nature Reviews Molecular Cell Biology.

[159]  J. Impe,et al.  The effect of pH on indole-3-acetic acid (IAA) biosynthesis of Azospirillum brasilense Sp7 , 2003 .

[160]  P. Pucci,et al.  Indole-3-acetic acid regulates the central metabolic pathways in Escherichia coli. , 2006, Microbiology.

[161]  D. Gross,et al.  Evaluation of the Role of Syringomycin in Plant Pathogenesis by Using Tn5 Mutants of Pseudomonas syringae pv. syringae Defective in Syringomycin Production , 1988, Applied and environmental microbiology.

[162]  A. Franks,et al.  Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[163]  J. V. Van Impe,et al.  Transcriptional analysis of the Azospirillum brasilense indole-3-pyruvate decarboxylase gene and identification of a cis-acting sequence involved in auxin responsive expression. , 2005, Molecular plant-microbe interactions : MPMI.

[164]  A. Khalid,et al.  Relative efficiency of rhizobacteria for auxin biosynthesis in rhizosphere and non-rhizosphere soils , 2004 .

[165]  T. Bisseling,et al.  Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[166]  Patrick Bultinck,et al.  Coulomb and Overlap Self-Similarities: A Comparative Selectivity Analysis of Structure-Function Relationships for Auxin-like Molecules , 2006, J. Chem. Inf. Model..

[167]  K. Braeken,et al.  New horizons for (p)ppGpp in bacterial and plant physiology. , 2006, Trends in microbiology.

[168]  Laurent Zimmerli,et al.  Transcriptome analysis of Arabidopsis colonized by a plant-growth promoting rhizobacterium reveals a general effect on disease resistance. , 2003, The Plant journal : for cell and molecular biology.

[169]  C. Keel,et al.  Enhanced production of indole-3-acetic acid by a genetically modified strain of Pseudomonas fluorescens CHA0 affects root growth of cucumber, but does not improve protection of the plant against Pythium root rot , 1999 .

[170]  J. Vanderleyden,et al.  Azospirillum brasilense Produces the Auxin-Like Phenylacetic Acid by Using the Key Enzyme for Indole-3-Acetic Acid Biosynthesis , 2005, Applied and Environmental Microbiology.

[171]  N. L. Glass,et al.  Cloning of the gene for indoleacetic acid-lysine synthetase from Pseudomonas syringae subsp. savastanoi , 1986, Journal of bacteriology.

[172]  J. Kaper,et al.  On the metabolism of tryptophan by Agrobacterium tumefaciens. , 1958, Biochimica et biophysica acta.

[173]  C. A. Thomas,et al.  Molecular cloning. , 1977, Advances in pathobiology.

[174]  S. Lindow,et al.  Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae. , 1998, Molecular plant-microbe interactions : MPMI.

[175]  G. Fink,et al.  Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[176]  Frans,et al.  Genes Galore: A Summary of Methods for Accessing Results from Large-Scale Partial Sequencing of Anonymous Arabidopsis cDNA Clones , 1994, Plant physiology.

[177]  Xun Wang,et al.  Large-scale profiling of the Arabidopsis transcriptome. , 2000, Plant physiology.

[178]  Y. Sakamoto,et al.  The bacterial decomposition of indoleacetic acid. , 1961 .

[179]  R. O. Morris Genes Specifying Auxin and Cytokinin Biosynthesis in Prokaryotes , 1987 .

[180]  Ross C. Bean,et al.  Permeability of Lipid Bilayer Membranes to Organic Solutes , 1968, The Journal of general physiology.

[181]  E. Martínez-Romero,et al.  Bacterial endophytes and their interactions with hosts. , 2006, Molecular plant-microbe interactions : MPMI.

[182]  P. Pucci,et al.  Indole-3-acetic acid improves Escherichia coli’s defences to stress , 2006, Archives of Microbiology.

[183]  H. Spaink,et al.  Lipochitin Oligosaccharides from Rhizobium leguminosarum bv. viciae Reduce Auxin Transport Capacity in Vicia sativa subsp. nigra Roots , 1999 .

[184]  I. Barash,et al.  The regulatory cascade that activates the Hrp regulon in Erwinia herbicola pv. gypsophilae. , 2003, Molecular plant-microbe interactions : MPMI.

[185]  G. Caetano-Anollés,et al.  Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[186]  J. Bunt Isolation of bacteria-free cultures from hormogone-producing blue-green algae. , 1961, Nature.

[187]  G. Martin,et al.  Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[188]  S. Hutcheson,et al.  Regulation of 3-indoleacetic acid production in Pseudomonas syringae pv. savastanoi. Purification and properties of tryptophan 2-monooxygenase. , 1985, The Journal of biological chemistry.

[189]  R. Bally,et al.  Physical organization of phytobeneficial genes nifH and ipdC in the plant growth-promoting rhizobacterium Azospirillum lipoferum 4VI. , 2005, FEMS microbiology letters.

[190]  J. Guern,et al.  Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells , 1996, Planta.

[191]  A. Müller,et al.  Occurrence and formation of indole-3-acetamide in Arabidopsis thaliana , 2002, Planta.

[192]  R. Müller,et al.  Uptake Kinetics of 2,4-Dichlorophenoxyacetate by Delftia acidovorans MC1 and Derivative Strains: Complex Characteristics in Response to pH and Growth Substrate , 2006, Bioscience, biotechnology, and biochemistry.

[193]  K. Verstrepen,et al.  Flocculation, adhesion and biofilm formation in yeasts , 2006, Molecular microbiology.

[194]  M. Valls,et al.  Integrated Regulation of the Type III Secretion System and Other Virulence Determinants in Ralstonia solanacearum , 2006, PLoS pathogens.

[195]  D. Galbraith,et al.  CYP83B1, a Cytochrome P450 at the Metabolic Branch Point in Auxin and Indole Glucosinolate Biosynthesis in Arabidopsis , 2001, Plant Cell.

[196]  A. Müller,et al.  Many roads lead to "auxin": of nitrilases, synthases, and amidases. , 2006, Plant biology.

[197]  R. Napier,et al.  Receptors for auxin: will it all end in TIRs? , 2006, Trends in Plant Science.

[198]  R. Kucey Plant growth-altering effects of Azospirillum brasilense and Bacillus C–11–25 on two wheat cultivars , 1988 .

[199]  G. Martin,et al.  Bacterial elicitation and evasion of plant innate immunity , 2006, Nature Reviews Molecular Cell Biology.

[200]  N. Graham,et al.  Quick on the Uptake: Characterization of a Family of Plant Auxin Influx Carriers , 2001, Journal of Plant Growth Regulation.

[201]  T. Kawano,et al.  Fungal auxin antagonist hypaphorine competitively inhibits indole-3-acetic acid-dependent superoxide generation by horseradish peroxidase. , 2001, Biochemical and biophysical research communications.