Planar Hall effect and Anisotropic Magnetoresistance in Thin Films of Chiral Antiferromagnet Mn3Sn

Antiferromagnetic Weyl semimetals with spin chirality offer excellent platforms to address the Berry phase physics, which manifests prominently in several of their electro-optical and electro-magnetic responses including as a large anomalous Hall effect (AHE) and spin Hall conductivity. Here, we report measurements of magneto-transport in c-axis textured Mn3Sn thin films grown on the [111] plane of single crystal MgO. At room temperature, these films display a weak uncompensated magnetic moment of \approx 0.12 \micro_{B}/f.u. in the basal plane and a longitudinal resistivity (\rho_{xx}) close to \approx 3.8 \micro\Omega.m. A residual resistivity ration (\rho_{xx} (300 K)/\rho_{xx} (2 K)) of \approx 3.92 further indicates the high quality of the films. While at 300 K a weak AHE together with field-linear Hall resistivity (\rho_{xy}) is observed in magnetic fields (H) applied perpendicular to the Kagome planes, the temperature (T) dependence of \rho_{xy} shows prominent signatures of three magnetic phases in the temperature regime of 2 to 300 K. The \rho_{xy} also derives a non-trivial topological contribution (\r{ho}THE \approx 1n\Omega.m) in the spin glass phase which appears at T \geq 100 K. Our measurements of anisotropic magnetoresistance (AMR) and planar Hall effect (PHE) over a wide H-T phase space reveal the hitherto unseen effects in the three magnetic phases of Mn3Sn. While the AMR and PHE are negative in the inverse triangular spin phase (250 K \geq T \geq TN), the helical phase (100 \geq T \geq 250 K) is devoid of anisotropic in-plane resistivity, and the spin glass phase shows a sign reversal of AMR with the increasing magnetic field. The origin of this sign change in AMR/PHE is attributed to the emergence of topologically protected spin textures like skyrmions where the fictitious effective magnetic field is estimated to be \approx 4.4 tesla.

[1]  T. Higo,et al.  Thin film properties of the non-collinear Weyl antiferromagnet Mn3Sn , 2022, Journal of Magnetism and Magnetic Materials.

[2]  Bohm-Jung Yang,et al.  Higher harmonics in planar Hall effect induced by cluster magnetic multipoles , 2022, Nature Communications.

[3]  Zexin Feng,et al.  Noncollinear Mn3Sn for Antiferromagnetic Spintronics , 2022, Materials Today Physics.

[4]  N. Drichko,et al.  Disorder driven variations in magnetoresistance and planar Hall effect in Bi2Te3 thin films , 2022, Thin Solid Films.

[5]  E. Tsymbal,et al.  Efficient perpendicular magnetization switching by a magnetic spin Hall effect in a noncollinear antiferromagnet , 2022, Nature Communications.

[6]  A. Pathak,et al.  Magnetotransport and magnetic textures in Ho/FeCoGd/ β -W multilayers , 2022, Physical Review B.

[7]  Le Zhang,et al.  Anisotropic magnetoresistance and planar Hall effect in correlated and topological materials , 2022, Journal of Vacuum Science & Technology A.

[8]  T. Higo,et al.  Giant field-like torque by the out-of-plane magnetic spin Hall effect in a topological antiferromagnet , 2021, Nature Communications.

[9]  D. Muller,et al.  Imaging the spin chirality of ferrimagnetic Néel skyrmions stabilized on topological antiferromagnetic Mn3Sn , 2021, Physical Review Materials.

[10]  H. Ohno,et al.  Correlation of anomalous Hall effect with structural parameters and magnetic ordering in Mn3+xSn1−x thin films , 2021 .

[11]  H. Ohno,et al.  Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque , 2021, Nature Materials.

[12]  X. Xi,et al.  Planar topological Hall effect in a hexagonal ferromagnetic Fe5Sn3 single crystal , 2021, 2105.03898.

[13]  J. Higgins,et al.  Planar Hall effect in c-axis textured films of Bi85Sb15 topological insulator , 2021, AIP Advances.

[14]  R. Arita,et al.  Anomalous transport due to Weyl fermions in the chiral antiferromagnets Mn3X, X = Sn, Ge , 2020, Nature Communications.

[15]  Y. Tokura,et al.  High-field depinned phase and planar Hall effect in the skyrmion host Gd2PdSi3 , 2020, Physical Review B.

[16]  J. Pearson,et al.  Large anomalous Nernst and inverse spin-Hall effects in epitaxial thin films of kagome semimetal Mn3Ge , 2020, 2003.02203.

[17]  M. Oogane,et al.  Fabrication and evaluation of highly c-plane oriented Mn3Sn thin films , 2020, AIP Advances.

[18]  H. Ohno,et al.  Crystal orientation and anomalous Hall effect of sputter-deposited non-collinear antiferromagnetic Mn3Sn thin films , 2019, Applied Physics Express.

[19]  E. Dagotto,et al.  Planar topological Hall effect from conical spin spirals , 2019, 1911.02978.

[20]  C. Felser,et al.  Anomalous and topological Hall effects in epitaxial thin films of the noncollinear antiferromagnet Mn3Sn , 2019, Physical Review B.

[21]  C. Felser,et al.  Magnetic and electrical transport signatures of uncompensated moments in epitaxial thin films of the noncollinear antiferromagnet Mn3Ir , 2019, Applied Physics Letters.

[22]  A. Nayak,et al.  Field-induced topological Hall effect in the noncoplanar triangular antiferromagnetic geometry of Mn3Sn , 2019, Physical Review B.

[23]  M. Oogane,et al.  Improvement of Large Anomalous Hall Effect in Polycrystalline Antiferromagnetic Mn3+xSn Thin Films , 2019, IEEE Transactions on Magnetics.

[24]  Dominique Mailly,et al.  Chiral domain walls of Mn3Sn and their memory , 2019, Nature Communications.

[25]  F. Pan,et al.  Anomalous Hall Effect–Like Behavior with In‐Plane Magnetic Field in Noncollinear Antiferromagnetic Mn3Sn Films , 2019, Advanced Electronic Materials.

[26]  D. Ralph,et al.  Spin-Orbit Torques in Heavy-Metal-Ferromagnet Bilayers with Varying Strengths of Interfacial Spin-Orbit Coupling. , 2019, Physical review letters.

[27]  M. Oogane,et al.  Anomalous Hall effect in polycrystalline Mn3Sn thin films , 2018, Applied Physics Letters.

[28]  C. Chien,et al.  Anomalous Hall effect in thin films of the Weyl antiferromagnet Mn3Sn , 2018, Applied Physics Letters.

[29]  Y. Tokura,et al.  Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet , 2018, Science.

[30]  C. Felser,et al.  Noncollinear antiferromagnetic Mn3Sn films , 2018 .

[31]  E. Bauer,et al.  Magnetic Phase Dependence of the Anomalous Hall Effect in Mn$_3$Sn Single Crystals , 2018, 1804.00116.

[32]  Y. Tokura,et al.  Noncentrosymmetric Magnets Hosting Magnetic Skyrmions , 2017, Advanced materials.

[33]  J. Zang,et al.  Skyrmions in magnetic multilayers , 2017, 1706.08295.

[34]  C. Felser,et al.  Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compoundsMn3X(Binghai Yan,et al.  Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn , 2016, New Journal of Physics.

[36]  T. Higo,et al.  Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature , 2016, Nature.

[37]  J. Wunderlich,et al.  Antiferromagnetic spintronics. , 2015, Nature nanotechnology.

[38]  Y. Tokura,et al.  Formation of In-plane Skyrmions in Epitaxial MnSi Thin Films as Revealed by Planar Hall Effect , 2015, 1506.04821.

[39]  A. Tulapurkar,et al.  Sign reversal of anisotropic magnetoresistance in La0.7Ca0.3MnO3/SrTiO3 ultrathin films , 2014, 1409.7250.

[40]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[41]  R. Wiesendanger,et al.  Writing and Deleting Single Magnetic Skyrmions , 2013, Science.

[42]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[43]  J. Sinova,et al.  Anomalous hall effect , 2009, 0904.4154.

[44]  P. Böni,et al.  Topological Hall effect in the A phase of MnSi. , 2009, Physical review letters.

[45]  J. B. Forsyth,et al.  Determination of the magnetic structure of Mn3Sn using generalized neutron polarization analysis , 1990 .

[46]  Y. Yamaguchi,et al.  Triangular spin structure and weak ferromagnetism of Mn3Sn at low temperature , 1986 .

[47]  Y. Yamaguchi,et al.  Triangular spin configuration and weak ferromagnetism of Mn3Sn and Mn3Ge , 1982 .

[48]  T. Mcguire,et al.  Anisotropic magnetoresistance in ferromagnetic 3d alloys , 1975 .