Preparation and characterization of porous carbon from expanded graphite for high energy density supercapacitor in aqueous electrolyte

South African Research Chairs Initiative (SARChi) in Carbon Technology and Materials of the Department of Science and Technology (DST) and the National Research Foundation (NRF).

[1]  Drew C. Higgins,et al.  Activated and nitrogen-doped exfoliated graphene as air electrodes for metal–air battery applications , 2013 .

[2]  J. Casado,et al.  Raman spectroscopic characterization of some commercially available carbon black materials , 1995 .

[3]  Soojin Park,et al.  A study on high electrochemical capacitance of ion exchange resin-based activated carbons for supercapacitor , 2012 .

[4]  Y. Gogotsi,et al.  True Performance Metrics in Electrochemical Energy Storage , 2011, Science.

[5]  N. Siddique,et al.  Raman spectroscopic characterization of carbonaceous aerosols , 2001 .

[6]  P. Taberna,et al.  Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors , 2003 .

[7]  B. Abdulhakeem,et al.  Morphological characterization and impedance spectroscopy study of porous 3D carbons based on graphene foam-PVA/phenol-formaldehyde resin composite as an electrode material for supercapacitors , 2014 .

[8]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[9]  Yury Gogotsi,et al.  Carbide‐Derived Carbons – From Porous Networks to Nanotubes and Graphene , 2011 .

[10]  H. V. Bekkum,et al.  XPS of nitrogen-containing functional groups on activated carbon , 1995 .

[11]  J. Pu,et al.  Preparation and Electrochemical Characterization of Hollow Hexagonal NiCo2S4 Nanoplates as Pseudocapacitor Materials , 2014 .

[12]  N. Munichandraiah,et al.  Symmetric supercapacitor based on partially exfoliated and reduced graphite oxide in neutral aqueous electrolyte , 2014 .

[13]  G. Yushin,et al.  Hydrothermal synthesis of microalgae-derived microporous carbons for electrochemical capacitors , 2014 .

[14]  Yongsheng Chen,et al.  Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials. , 2013, Journal of the American Chemical Society.

[15]  L. Dai,et al.  Vertically aligned BCN nanotubes with high capacitance. , 2012, ACS nano.

[16]  Paula Ratajczak,et al.  Factors contributing to ageing of high voltage carbon/carbon supercapacitors in salt aqueous electrolyte , 2014, Journal of Applied Electrochemistry.

[17]  F. Béguin,et al.  Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte , 2012 .

[18]  J. Laureyns,et al.  Raman microprobe studies on carbon materials , 1994 .

[19]  Lele Peng,et al.  Two dimensional nanomaterials for flexible supercapacitors. , 2014, Chemical Society reviews.

[20]  Robinson Rg To be or ... , 1986 .

[21]  Lehui Lu,et al.  Bacteria promoted hierarchical carbon materials for high-performance supercapacitor , 2012 .

[22]  Meryl D. Stoller,et al.  Review of Best Practice Methods for Determining an Electrode Material's Performance for Ultracapacitors , 2010 .

[23]  Hsisheng Teng,et al.  Performance of electric double-layer capacitors using carbons prepared from phenol–formaldehyde resins by KOH etching , 2001 .

[24]  Pooi See Lee,et al.  3D carbon based nanostructures for advanced supercapacitors , 2013 .

[25]  A. B. Fuertes,et al.  Polypyrrole‐Derived Activated Carbons for High‐Performance Electrical Double‐Layer Capacitors with Ionic Liquid Electrolyte , 2012 .

[26]  Kai Yang,et al.  Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo-based industrial by-product as a high performance supercapacitor electrode material , 2015 .

[27]  Kai Cui,et al.  Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors , 2015 .

[28]  Don Harfield,et al.  Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. , 2013, ACS nano.

[29]  Artur P. Terzyk,et al.  The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro , 2000 .

[30]  J. Heintzenberg,et al.  NIR FT Raman spectroscopic study of flame soot , 1999 .

[31]  R. McCreery,et al.  Raman Spectroscopy of Carbon Materials: Structural Basis of Observed Spectra , 1990 .

[32]  S. Nair,et al.  Supercapacitor electrodes using nanoscale activated carbon from graphite by ball milling , 2012 .

[33]  Lili Zhang,et al.  Graphene-based materials as supercapacitor electrodes , 2010 .

[34]  Soojin Park,et al.  Easy synthesis of polyaniline-based mesoporous carbons and their high electrochemical performance , 2012 .

[35]  Reinhard Niessner,et al.  Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information , 2005 .

[36]  Yong Jung Kim,et al.  Correlation between the pore and solvated ion size on capacitance uptake of PVDC-based carbons , 2004 .

[37]  François Béguin,et al.  High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte , 2010 .

[38]  Jeffrey W. Long,et al.  To Be or Not To Be Pseudocapacitive , 2015 .

[39]  Pinghua Ling,et al.  Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template , 2012 .

[40]  Fan Zhang,et al.  Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors , 2013, Scientific Reports.

[41]  Jiayan Luo,et al.  Effect of sheet morphology on the scalability of graphene-based ultracapacitors. , 2013, ACS nano.

[42]  Synthesis of 3D porous carbon based on cheap polymers and graphene foam for high-performance electrochemical capacitors , 2015 .

[43]  Xin Li,et al.  Supercapacitors based on nanostructured carbon , 2013 .

[44]  F. Béguin,et al.  A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution , 2010 .

[45]  Takeshi Fujita,et al.  High-quality three-dimensional nanoporous graphene. , 2014, Angewandte Chemie.

[46]  Hongbing Lu,et al.  Hierarchically structured graphene-based supercapacitor electrodes , 2013 .

[47]  Lan Jiang,et al.  Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes , 2013 .