Yb^3+-doped double-clad phosphate fiber for 976 nm single-frequency laser amplifiers

National Aeronautics and Space Administration (NASA) Small Business Technology Transfer (STTR) Phase II [NNX15CP19C]; National Science Foundation Engineering Research Center for Integrated Access Networks [EEC-0812072]; Technology Research Initiative Fund (TRIF) Photonics Initiative of the University of Arizona

[1]  J. Nilsson,et al.  A 980-nm Yb-doped fiber MOPA source and its frequency doubling , 2004, IEEE Photonics Technology Letters.

[2]  D. Hanna,et al.  Ring-doped cladding-pumped single-mode three-level fiber laser. , 1998, Optics letters.

[3]  Nasser N Peyghambarian,et al.  Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length , 2000 .

[4]  Gang Li,et al.  980 nm Yb-doped single-mode fiber laser and its frequency-doubling with BIBO , 2009 .

[5]  W. Shi,et al.  Fiber lasers and their applications [Invited]. , 2014, Applied optics.

[6]  D. Hanna,et al.  Ytterbium-doped fiber amplifiers , 1997 .

[7]  Yoann Zaouter,et al.  High power ytterbium-doped rod-type three-level photonic crystal fiber laser. , 2008, Optics express.

[8]  David Eger,et al.  Efficient Yb-doped air-clad fiber laser operating at 980 nm and its frequency doubling , 2003, SPIE LASE.

[9]  H. Bartelt,et al.  Tapered large-core 976 nm Yb-doped fiber laser with 10 W output power , 2014 .

[10]  John D. Myers,et al.  Ytterbium-doped phosphate laser glasses , 1997, Photonics West.

[11]  Charles R. Kurkjian,et al.  Mechanical and Structural Properties of Phosphate Glasses , 2001 .

[12]  J. Rothenberg,et al.  Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier. , 2009, Optics letters.

[13]  J K Sahu,et al.  High-power, low-noise, Yb-doped, cladding-pumped, three-level fiber sources at 980 nm. , 2003, Optics letters.

[14]  H. Qi,et al.  980-nm master oscillator power amplifiers with nonabsorbing mirrors , 1999, IEEE Photonics Technology Letters.

[15]  Simo Tammela,et al.  Photodarkening in ytterbium-doped silica fibers , 2005, SPIE Security + Defence.

[16]  A. B. Ruffin,et al.  502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier. , 2007, Optics express.

[17]  Bo Wang,et al.  978 nm Single Frequency Actively $Q$ -Switched All Fiber Laser , 2014, IEEE Photonics Technology Letters.

[18]  R L Byer,et al.  20 W single-mode Yb3+ -doped phosphate fiber laser. , 2006, Optics letters.

[19]  Shibin Jiang,et al.  Measurement of high-photodarkening resistance in phosphate fiber doped with 12% Yb2O3 , 2008, SPIE LASE.

[20]  P. Georges,et al.  Frequency doubling of an efficient continuous wave single-mode Yb-doped fiber laser at 978 nm in a periodically-poled MgO:LiNbO3 waveguide. , 2005, Optics express.

[21]  Wei Shi,et al.  976 nm Single-Polarization Single-Frequency Ytterbium-Doped Phosphate Fiber Amplifiers , 2013, IEEE Photonics Technology Letters.

[22]  M.J.F. Digonnet,et al.  High-Power $\hbox{Yb}^{{\bm 3}{\bm +}}$-Doped Phosphate Fiber Amplifier , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  John D. Minelly,et al.  1 W single-transverse-mode Yb-doped double-clad fibre laser at 978 nm , 2001 .

[24]  Eric Cormier,et al.  Millijoule-class Yb-doped pulsed fiber laser operating at 977 nm. , 2010, Optics letters.

[25]  M. Weyers,et al.  Design and realization of high-power DFB lasers , 2004, SPIE Optics East.

[26]  Wei Shi,et al.  976 nm single-frequency distributed Bragg reflector fiber laser. , 2012, Optics letters.

[27]  D. Hanna,et al.  Lifetime quenching in Yb-doped fibres , 1997 .

[28]  Cesar Jauregui,et al.  94 W 980 nm high brightness Yb-doped fiber laser. , 2008, Optics express.