A new method for automatic areal feature matching based on shape similarity using CRITIC method

In this paper, we proposed the method automatically to match areal feature based on similarity using spatial information. For this, we extracted candidate matching pairs intersected between two different spatial datasets, and then measured a shape similarity, which is calculated by an weight sum method of each matching criterion automatically derived from CRITIC method. In this time, matching pairs were selected when similarity is more than a threshold determined by outliers detection of adjusted boxplot from training data. After applying this method to two distinct spatial datasets: a digital topographic map and street-name address base map, we conformed that buildings were matched, that shape is similar and a large area is overlaid in visual evaluation, and F-Measure is highly 0.932 in statistical evaluation.