Whole-body motion control for a rescue robot using robust task-priority based CLIK

This paper introduces a rescue robot to extract a casualty from hazardous environment and suggests a specific whole-body behavior strategy suitable for the rescue mission taking into account the characteristics of the robot configuration. Since the robot has redundant degrees of freedom, a task-priority based CLIK as differential inverse kinematics approach is adopted for real-time implementation and the redundant domain is utilized to reflect some restrictions in terms of safety and stability of the robot. When multiple tasks with different priority are handled simultaneously by the CLIK, a well-known Algorithmic Singularity problem could be taken place. For this issue, hence, this study applies a robust algorithm against the algorithmic singularity as well as the kinematic singularity and its applicability is verified through a real experiment using a small-scaled simulator instead of the developing rescue-robot.

[1]  S. Chiaverini,et al.  Achieving user-defined accuracy with damped least-squares inverse kinematics , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[2]  Jean-Jacques E. Slotine,et al.  A general framework for managing multiple tasks in highly redundant robotic systems , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[3]  Gianluca Antonelli,et al.  Stability Analysis for Prioritized Closed-Loop Inverse Kinematic Algorithms for Redundant Robotic Systems , 2009, IEEE Trans. Robotics.

[4]  Gianluca Antonelli,et al.  Stability analysis for prioritized closed-loop inverse kinematic algorithms for redundant robotic systems , 2008, 2008 IEEE International Conference on Robotics and Automation.

[5]  Stefano Chiaverini,et al.  Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators , 1997, IEEE Trans. Robotics Autom..