Probing quantum coherence in ultrafast molecular processes: An ab initio approach to open quantum systems.

Revealing possible long-living coherence in ultrafast processes allows detecting genuine quantum mechanical effects in molecules. To investigate such effects from a quantum chemistry perspective, we have developed a method for simulating the time evolution of molecular systems based on ab initio calculations, which includes relaxation and environment-induced dephasing of the molecular wave function whose rates are external parameters. The proposed approach combines a quantum chemistry description of the molecular target with a real-time propagation scheme within the time-dependent stochastic Schrödinger equation. Moreover, it allows a quantitative characterization of the state and dynamics coherence through the l1-norm of coherence and the linear entropy, respectively. To test the approach, we have simulated femtosecond pulse-shaping ultrafast spectroscopy of terrylenediimide, a well-studied fluorophore in single-molecule spectroscopy. Our approach is able to reproduce the experimental findings [R. Hildner et al., Nat. Phys. 7, 172 (2011)], confirming the usefulness of the approach and the correctness of the implementation.

[1]  K. Mølmer,et al.  Wave-function approach to dissipative processes in quantum optics. , 1992, Physical review letters.

[2]  K. B. Whaley,et al.  Quantum entanglement in photosynthetic light-harvesting complexes , 2009, 0905.3787.

[3]  Gregory D. Scholes,et al.  Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature , 2010, Nature.

[4]  B. Leimkuhler,et al.  Rational Construction of Stochastic Numerical Methods for Molecular Sampling , 2012, 1203.5428.

[5]  G. Scholes Quantum-Coherent Electronic Energy Transfer: Did Nature Think of It First? , 2010 .

[6]  R. Mathies,et al.  Conical intersection dynamics of the primary photoisomerization event in vision , 2010, Nature.

[7]  S. Mukamel,et al.  Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations. , 2000, Annual review of physical chemistry.

[8]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[9]  Andreas Dreuw,et al.  Single-reference ab initio methods for the calculation of excited states of large molecules. , 2005, Chemical reviews.

[10]  F. Petruccione,et al.  Stochastic wave function method for non-markovian quantum master equations , 1999 .

[11]  A. Toniolo,et al.  Efficient calculation of Franck–Condon factors and vibronic couplings in polyatomics , 2001, J. Comput. Chem..

[12]  Jacopo Tomasi,et al.  Enhanced response properties of a chromophore physisorbed on a metal particle , 2001 .

[13]  N. Gisin,et al.  The quantum state diffusion picture of physical processes , 1993 .

[14]  A. Aspuru‐Guzik,et al.  On the alternatives for bath correlators and spectral densities from mixed quantum-classical simulations. , 2012, The Journal of chemical physics.

[15]  A. Eisfeld,et al.  Non-Perturbative Calculation of Two-Dimensional Spectra Using the Stochastic Hierarchy of Pure States. , 2016, The journal of physical chemistry letters.

[16]  S. Silvestri,et al.  Ultrafast optical parametric amplifiers , 2003 .

[17]  Michael Schreiber,et al.  Calculation of absorption spectra for light-harvesting systems using non-Markovian approaches as well as modified Redfield theory. , 2006, The Journal of chemical physics.

[18]  G. Cerullo,et al.  Coherent ultrafast charge transfer in an organic photovoltaic blend , 2014, Science.

[19]  K. B. Whaley,et al.  Accounting for intra-molecular vibrational modes in open quantum system description of molecular systems. , 2012, The Journal of chemical physics.

[20]  K. B. Whaley,et al.  Using coherence to enhance function in chemical and biophysical systems , 2017, Nature.

[21]  Hermann Haken,et al.  The coupled coherent and incoherent motion of excitons and its influence on the line shape of optical absorption , 1972 .

[22]  T. Klamroth,et al.  Current versus temperature-induced switching of a single molecule: open-system density matrix theory for 1,5-cyclooctadiene on Si(100). , 2012, The Journal of chemical physics.

[23]  Jacopo Tomasi,et al.  Molecular properties in solution described with a continuum solvation model , 2002 .

[24]  Lipeng Chen,et al.  Theory of femtosecond coherent double-pump single-molecule spectroscopy: Application to light harvesting complexes. , 2015, The Journal of chemical physics.

[25]  E. van Dijk,et al.  Ultrafast dynamics of single molecules. , 2014, Chemical Society reviews.

[26]  S. Wüster,et al.  Open quantum system parameters for light harvesting complexes from molecular dynamics. , 2015, Physical chemistry chemical physics : PCCP.

[27]  M. Ventra,et al.  Stochastic time-dependent current-density functional theory: a functional theory of open quantum systems , 2008, 0805.3734.

[28]  A. G. Redfield,et al.  The Theory of Relaxation Processes , 1965 .

[29]  Giulio Cerullo,et al.  Ab Initio Simulations of Two-Dimensional Electronic Spectra: The SOS//QM/MM Approach , 2014 .

[30]  Klaus Schulten,et al.  Excitons in a photosynthetic light-harvesting system: a combined molecular dynamics, quantum chemistry, and polaron model study. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Hermann Haken,et al.  An exactly solvable model for coherent and incoherent exciton motion , 1973 .

[32]  Elisabetta Collini,et al.  Spectroscopic signatures of quantum-coherent energy transfer. , 2013, Chemical Society reviews.

[33]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[34]  P. Knight,et al.  The Quantum jump approach to dissipative dynamics in quantum optics , 1997, quant-ph/9702007.

[35]  A. Aspuru‐Guzik,et al.  Time-dependent density functional theory of open quantum systems in the linear-response regime. , 2010, The Journal of chemical physics.

[36]  O. Andreussi,et al.  Semiempirical (ZINDO-PCM) approach to predict the radiative and nonradiative decay rates of a molecule close to metal particles. , 2006, The journal of physical chemistry. B.

[37]  Shaul Mukamel,et al.  Two-dimensional electronic double-quantum coherence spectroscopy. , 2009, Accounts of chemical research.

[38]  Photochemistry: Caught in the act. , 2017, Nature chemistry.

[39]  R. D’Agosta,et al.  A stochastic approach to open quantum systems , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[40]  H. Appel,et al.  Stochastic quantum molecular dynamics for finite and extended systems , 2011, 1101.3079.

[41]  Klaus Mølmer,et al.  A Monte Carlo wave function method in quantum optics , 1993, Optical Society of America Annual Meeting.

[42]  Gunter Hermann,et al.  Laser-Driven Hole Trapping in a Ge/Si Core–Shell Nanocrystal: An Atomistic Configuration Interaction Perspective , 2015 .

[43]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[44]  J. Tremblay,et al.  Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields. , 2016, The Journal of chemical physics.

[45]  Angel Rubio,et al.  Quantum coherence controls the charge separation in a prototypical artificial light-harvesting system , 2012, Nature Communications.

[46]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[47]  Alexander Eisfeld,et al.  Non-markovian quantum state diffusion for absorption spectra of molecular aggregates. , 2010, The Journal of chemical physics.

[48]  H. Metiu,et al.  Quantum dynamics with dissipation: A treatment of dephasing in the stochastic Schrödinger equation , 1999 .

[49]  M. Schlosshauer Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.

[50]  D. Coker,et al.  Influence of site-dependent pigment-protein interactions on excitation energy transfer in photosynthetic light harvesting. , 2013, The journal of physical chemistry. B.

[51]  G. Fleming,et al.  Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature , 2009, Proceedings of the National Academy of Sciences.

[52]  Alexander Eisfeld,et al.  Influence of complex exciton-phonon coupling on optical absorption and energy transfer of quantum aggregates. , 2009, Physical review letters.

[53]  Rienk van Grondelle,et al.  Energy transfer in photosynthesis: experimental insights and quantitative models. , 2006, Physical chemistry chemical physics : PCCP.

[54]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[55]  Basile F. E. Curchod,et al.  Ab Initio Nonadiabatic Quantum Molecular Dynamics. , 2018, Chemical reviews.

[56]  W. Domcke,et al.  Theoretical aspects of femtosecond double-pump single-molecule spectroscopy. II. Strong-field regime. , 2017, Physical chemistry chemical physics : PCCP.

[57]  R. Hildner,et al.  Femtosecond coherence and quantum control of single molecules at room temperature , 2010, 1012.2366.

[58]  W. Strunz,et al.  Non-Markovian Quantum State Diffusion for temperature-dependent linear spectra of light harvesting aggregates. , 2014, The Journal of chemical physics.

[59]  Hohjai Lee,et al.  Coherence Dynamics in Photosynthesis: Protein Protection of Excitonic Coherence , 2007, Science.

[60]  Klaus Müllen,et al.  Visualizing and controlling vibrational wave packets of single molecules , 2010, Nature.

[61]  Kwang S. Kim,et al.  Theory and applications of computational chemistry : the first forty years , 2005 .

[62]  W. Domcke,et al.  Theoretical aspects of femtosecond double-pump single-molecule spectroscopy. I. Weak-field regime. , 2017, Physical chemistry chemical physics : PCCP.

[63]  P. Rebentrost,et al.  Atomistic study of the long-lived quantum coherences in the Fenna-Matthews-Olson complex. , 2011, Biophysical journal.

[64]  Haobin Wang,et al.  Effects of intense femtosecond pumping on ultrafast electronic-vibrational dynamics in molecular systems with relaxation. , 2008, The Journal of chemical physics.

[65]  Jacopo Tomasi,et al.  Radiative and nonradiative decay rates of a molecule close to a metal particle of complex shape. , 2004, The Journal of chemical physics.

[66]  Jyrki Piilo,et al.  Non-Markovian quantum jumps. , 2007, Physical review letters.

[67]  G. Fleming,et al.  Quantum Coherence in Photosynthetic Light Harvesting , 2012 .

[68]  P. Gaspard,et al.  Non-Markovian stochastic Schrödinger equation , 1999 .

[69]  N. Makri Numerical path integral techniques for long time dynamics of quantum dissipative systems , 1995 .

[70]  I. D. Vega,et al.  Dynamics of non-Markovian open quantum systems , 2017 .

[71]  Shampa Raghunathan,et al.  Limits of the creation of electronic wave packets using time-dependent density functional theory. , 2012, The journal of physical chemistry. A.

[72]  J. Tremblay,et al.  Time-dependent configuration-interaction calculations of laser-driven dynamics in presence of dissipation. , 2008, The Journal of chemical physics.

[73]  Benedetta Mennucci,et al.  Fluorescence Enhancement of Chromophores Close to Metal Nanoparticles. Optimal Setup Revealed by the Polarizable Continuum Model , 2009 .

[74]  Desmond J. Higham,et al.  An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations , 2001, SIAM Rev..

[75]  U. Weiss Quantum Dissipative Systems , 1993 .

[76]  T. Mančal,et al.  Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems , 2007, Nature.

[77]  R. Kubo,et al.  Two-Time Correlation Functions of a System Coupled to a Heat Bath with a Gaussian-Markoffian Interaction , 1989 .

[78]  S. Pipolo,et al.  Equation of motion for the solvent polarization apparent charges in the polarizable continuum model: Application to time-dependent CI. , 2016, The Journal of chemical physics.

[79]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[80]  Darius Abramavicius,et al.  Coherent multidimensional optical spectroscopy of excitons in molecular aggregates; quasiparticle versus supermolecule perspectives. , 2009, Chemical reviews.

[81]  Zoller,et al.  Monte Carlo simulation of the atomic master equation for spontaneous emission. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[82]  H. Carmichael Statistical Methods in Quantum Optics 1 , 1999 .

[83]  Shampa Raghunathan,et al.  The Lack of Resonance Problem in Coherent Control with Real-Time Time-Dependent Density Functional Theory. , 2012, Journal of chemical theory and computation.

[84]  YiJing Yan,et al.  Quantum mechanics of dissipative systems. , 2005, Annual review of physical chemistry.

[85]  Jacopo Tomasi,et al.  Formation and relaxation of excited states in solution: a new time dependent polarizable continuum model based on time dependent density functional theory. , 2006, The Journal of chemical physics.

[86]  V. Barone,et al.  Effective method to compute vibrationally resolved optical spectra of large molecules at finite temperature in the gas phase and in solution. , 2007, The Journal of chemical physics.

[87]  V. Chernyak,et al.  Dissipative dynamics at conical intersections: simulations with the hierarchy equations of motion method. , 2016, Faraday discussions.

[88]  N. V. van Hulst,et al.  Quantum Coherent Energy Transfer over Varying Pathways in Single Light-Harvesting Complexes , 2013, Science.

[89]  Application of a time-convolutionless stochastic Schrödinger equation to energy transport and thermal relaxation. , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[90]  N. Gisin,et al.  The quantum-state diffusion model applied to open systems , 1992 .

[91]  I. Tavernelli,et al.  Quantum modeling of ultrafast photoinduced charge separation , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[92]  Stefano Corni,et al.  Real-Time Description of the Electronic Dynamics for a Molecule Close to a Plasmonic Nanoparticle , 2016, The journal of physical chemistry. C, Nanomaterials and interfaces.

[93]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[94]  Bradley F. Habenicht,et al.  Two-electron Rabi oscillations in real-time time-dependent density-functional theory. , 2014, The Journal of chemical physics.

[95]  H. Carmichael An open systems approach to quantum optics , 1993 .

[96]  Shampa Raghunathan,et al.  Critical Examination of Explicitly Time-Dependent Density Functional Theory for Coherent Control of Dipole Switching. , 2011, Journal of chemical theory and computation.

[97]  Andrew J. Daley,et al.  Quantum trajectories and open many-body quantum systems , 2014, 1405.6694.

[98]  K. Schulten,et al.  From atomistic modeling to excitation transfer and two-dimensional spectra of the FMO light-harvesting complex. , 2011, The journal of physical chemistry. B.

[99]  M. Scully,et al.  Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations , 2003 .

[100]  B. Leimkuhler,et al.  Robust and efficient configurational molecular sampling via Langevin dynamics. , 2013, The Journal of chemical physics.

[101]  Habib,et al.  Coherent states via decoherence. , 1993, Physical review letters.

[102]  Al'an Aspuru-Guzik,et al.  Relaxation and dephasing in open quantum systems time-dependent density functional theory: Properties of exact functionals from an exactly-solvable model system , 2010, 1101.0141.

[103]  G. Cerullo,et al.  Two-Dimensional Electronic Spectroscopy Unravels sub-100 fs Electron and Hole Relaxation Dynamics in Cd-Chalcogenide Nanostructures , 2017, The journal of physical chemistry letters.

[104]  Nancy Makri,et al.  Path integrals for dissipative systems by tensor multiplication. Condensed phase quantum dynamics for arbitrarily long time , 1994 .

[105]  Hermann Grabert,et al.  Exact c-number representation of non-Markovian quantum dissipation. , 2002, Physical review letters.

[106]  J. Tremblay,et al.  Dissipative many-electron dynamics of ionizing systems. , 2011, The Journal of chemical physics.

[107]  W. Strunz,et al.  Hierarchy of stochastic pure states for open quantum system dynamics. , 2014, Physical review letters.