Quantum theory as a description of robust experiments: Derivation of the Pauli equation

Abstract It is shown that the Pauli equation and the concept of spin naturally emerge from logical inference applied to experiments on a charged particle under the conditions that (i) space is homogeneous (ii) the observed events are logically independent, and (iii) the observed frequency distributions are robust with respect to small changes in the conditions under which the experiment is carried out. The derivation does not take recourse to concepts of quantum theory and is based on the same principles which have already been shown to lead to e.g. the Schrodinger equation and the probability distributions of pairs of particles in the singlet or triplet state. Application to Stern–Gerlach experiments with chargeless, magnetic particles, provides additional support for the thesis that quantum theory follows from logical inference applied to a well-defined class of experiments.

[1]  Kristel Michielsen,et al.  Event‐by‐event simulation of quantum phenomena , 2012, 1208.2365.

[2]  D. Bohm,et al.  A causal interpretation of the pauli equation (B) , 1955 .

[3]  John P. Ralston,et al.  Emergent mechanics, quantum and un-quantum , 2013, Optics & Photonics - Optical Engineering + Applications.

[4]  Armen E. Allahverdyan,et al.  Understanding quantum measurement from the solution of dynamical models , 2011, 1107.2138.

[5]  T. Takabayasi,et al.  On the Formulation of Quantum Mechanics associated with Classical Pictures , 1952 .

[6]  Quantummechanical behaviour in a deterministic model , 1996, quant-ph/9612018.

[7]  W. Feller,et al.  An Introduction to Probability Theory and Its Applications, Vol. 1 , 1967 .

[8]  Kristel Michielsen,et al.  Deterministic event-based simulation of quantum phenomena , 2004, Comput. Phys. Commun..

[9]  W. Heisenberg,et al.  On the structure of atomic nuclei , 1932 .

[10]  G. Pólya,et al.  Mathematics and Plausible Reasoning , 1956 .

[11]  T. Takabayasi On the Hydrodynamical Representation of Non-Relativistic Spinor Equation , 1954 .

[12]  T. Wallstrom,et al.  Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equations. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[13]  G. Grimmett,et al.  Probability and random processes , 2002 .

[14]  Otto Stern,et al.  Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld , 1922 .

[15]  Gerard 't Hooft The mathematical basis for deterministic quantum mechanics , 2006 .

[16]  P. Wallace The Band Theory of Graphite , 1947 .

[17]  W. Jr. Pauli,et al.  Zur Quantenmechanik des magnetischen Elektrons , 1927 .

[18]  W. Pauli Über den Einfluß der Geschwindigkeitsabhängigkeit der Elektronenmasse auf den Zeemaneffekt , 1925 .

[19]  M. Tribus Rational descriptions, decisions, and designs , 1969 .

[20]  M. Katsnelson Graphene: Carbon in Two Dimensions , 2006, cond-mat/0612534.

[21]  高林 武彦,et al.  On the formulation of quantum mechanics associated with classical pictures , 1952 .

[22]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[23]  W. Gerlāch,et al.  Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld , 1922 .

[24]  Kristel Michielsen,et al.  Discrete-event simulation of uncertainty in single-neutron experiments , 2014, Front. Physics.

[25]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[26]  R. Schiller Quasi-Classical Theory of the Spinning Electron , 1962 .

[27]  L. Ballentine Quantum mechanics : a modern development , 1998 .

[28]  H. Batelaan,et al.  Stern-Gerlach Effect for Electron Beams , 1997 .

[29]  W. Heisenberg,et al.  Über den Bau der Atomkerne. I , 1932 .

[30]  J. Keynes A Treatise on Probability. , 1923 .

[31]  Derivation of the Pauli equation using the principle of minimum Fisher information , 1998 .

[32]  Kristel Michielsen,et al.  Event-based simulation of quantum physics experiments , 2013, 1312.6942.

[33]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[34]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[35]  R. T. Cox Probability, frequency and reasonable expectation , 1990 .

[36]  Antony Valentini,et al.  Beyond the Quantum , 2009, 1001.2758.

[37]  T. Takabayasi The Vector Representation of Spinning Particle in the Quantum Theory, I* , 1955 .

[38]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[39]  R. T. Cox,et al.  The Algebra of Probable Inference , 1962 .

[40]  L. Landau FROM QUANTUM HYDRODYNAMICS TO QUANTUM GRAVITY , 2007 .

[41]  M. Katsnelson,et al.  Quantum theory as the most robust description of reproducible experiments: application to a rigid linear rotator , 2013, Optics & Photonics - Optical Engineering + Applications.

[42]  E. Madelung,et al.  Quantentheorie in hydrodynamischer Form , 1927 .

[43]  H. De Raedt,et al.  Event-Based Simulation of Neutron Interferometry Experiments , 2012 .

[44]  K. Michielsen,et al.  Quantum theory as the most robust description of reproducible experiments: application to a rigid linear rotator , 2013, Optics & Photonics - Optical Engineering + Applications.

[45]  Wolfgang Pauli Zur Quantenmechanik des magnetischen Elektrons , .

[46]  D. Griffiths Introduction to Elementary Particles , 1987 .

[47]  S. Bernstein,et al.  STERN-GERLACH EXPERIMENT ON POLARIZED NEUTRONS , 1954 .

[48]  M. Creutz Four-dimensional graphene and chiral fermions , 2007, 0712.1201.

[49]  S. Novikov The Hamiltonian formalism and a many-valued analogue of Morse theory , 1982 .

[50]  R. Baierlein Probability Theory: The Logic of Science , 2004 .

[51]  F. Jin,et al.  Event-Based Corpuscular Model for Quantum Optics Experiments , 2010, 1006.1728.

[52]  G. Volovik,et al.  ħ as parameter of Minkowski metric in effective theory , 2009, 0904.1965.

[53]  R. T. Cox The Algebra of Probable Inference , 1962 .

[54]  John P. Ralston,et al.  Revising your world-view of the fundamental constants , 2013, Optics & Photonics - Optical Engineering + Applications.

[55]  M. Boglione,et al.  Semi-Inclusive Deep Inelastic Scattering processes from small to large PT , 2006, hep-ph/0606286.