Atomistic mechanisms for frictional energy dissipation during continuous sliding

[1]  A. Martini,et al.  Bifurcation of nanoscale thermolubric friction behavior for sliding on MoS2 , 2021, Physical Review Materials.

[2]  Juekuan Yang,et al.  Resonance in Atomic-Scale Sliding Friction. , 2021, Nano letters.

[3]  I. Parkin,et al.  Macroscale Superlubricity Enabled by Graphene‐Coated Surfaces , 2020, Advanced science.

[4]  J. Frenken,et al.  On the Origin of Frictional Energy Dissipation , 2019, Tribology Letters.

[5]  Quanshui Zheng,et al.  Structural superlubricity and ultralow friction across the length scales , 2018, Nature.

[6]  Keke Chang,et al.  New Deformation-Induced Nanostructure in Silicon. , 2018, Nano letters.

[7]  J. Shiomi,et al.  Superlubrication by phonon confinement , 2018 .

[8]  Schoolof THE FERMI-PASTA-ULAM PROBLEM: PARADOX TURNS DISCOVERY , 2016 .

[9]  E. Meyer,et al.  Fundamentals of Friction and Wear on the Nanoscale , 2015 .

[10]  J. Frenken,et al.  The physics of atomic‐scale friction: Basic considerations and open questions , 2014 .

[11]  L. Stella,et al.  Generalized Langevin equation: An efficient approach to nonequilibrium molecular dynamics of open systems , 2013, 1312.4903.

[12]  J. Frenken,et al.  The problem of critical damping in nanofriction , 2012, Colloid Journal.

[13]  P. Reimann,et al.  Langevin equation for a system nonlinearly coupled to a heat bath , 2010 .

[14]  L. Kantorovich Generalized Langevin equation for solids. I. Rigorous derivation and main properties , 2008 .

[15]  Mark O. Robbins,et al.  Statistical Mechanics of Static and Low‐Velocity Kinetic Friction , 2003 .

[16]  J. Shea,et al.  Sliding Friction-Physical Principles and Applications , 1998, IEEE Electrical Insulation Magazine.

[17]  Roumen Tsekov,et al.  Stochastic dynamics of a subsystem interacting with a solid body with application to diffusive processes in solids , 1994 .

[18]  Joseph Ford,et al.  The Fermi-Pasta-Ulam problem: Paradox turns discovery , 1992 .

[19]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[20]  J. D. Doll,et al.  Generalized Langevin equation approach for atom/solid-surface scattering: General formulation for classical scattering off harmonic solids , 1976 .

[21]  R. Zwanzig Nonlinear generalized Langevin equations , 1973 .

[22]  S. Ulam,et al.  Studies of nonlinear problems i , 1955 .

[23]  G. A. Tomlinson B.Sc.,et al.  CVI. A molecular theory of friction , 1929 .

[24]  L. Prandtl,et al.  Ein Gedankenmodell zur kinetischen Theorie der festen Körper , 1928 .