Channel smoothing: efficient robust smoothing of low-level signal features

In this paper, we present a new and efficient method to implement robust smoothing of low-level signal features: B-spline channel smoothing. This method consists of three steps: encoding of the signal features into channels, averaging of the channels, and decoding of the channels. We show that linear smoothing of channels is equivalent to robust smoothing of the signal features if we make use of quadratic B-splines to generate the channels. The linear decoding from B-spline channels allows the derivation of a robust error norm, which is very similar to Tukey's biweight error norm. We compare channel smoothing with three other robust smoothing techniques: nonlinear diffusion, bilateral filtering, and mean-shift filtering, both theoretically and on a 2D orientation-data smoothing task. Channel smoothing is found to be superior in four respects: it has a lower computational complexity, it is easy to implement, it chooses the global minimum error instead of the nearest local minimum, and it can also be used on nonlinear spaces, such as orientation space.

[1]  Rachid Deriche,et al.  Orthonormal Vector Sets Regularization with PDE's and Applications , 2002, International Journal of Computer Vision.

[2]  Michael J. Black,et al.  On the unification of line processes, outlier rejection, and robust statistics with applications in early vision , 1996, International Journal of Computer Vision.

[3]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Per-Erik Forss,et al.  Sparse Representations for Medium Level Vision , 2001 .

[5]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[6]  Hans Knutsson,et al.  Robust N-dimensional orientation estimation using quadrature filters and tensor whitening , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[7]  Edwin R. Hancock,et al.  Probabilistic population coding of multiple edge orientation , 2002, Proceedings. International Conference on Image Processing.

[8]  Jan J. Koenderink,et al.  Discrimination thresholds for channel-coded systems , 1992, Biological Cybernetics.

[9]  J. Marron,et al.  Edge-Preserving Smoothers for Image Processing , 1998 .

[10]  Ronald N. Bracewell,et al.  The Fourier Transform and Its Applications , 1966 .

[11]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Michael Felsberg,et al.  A New Extension of Linear Signal Processing for Estimating Local Properties and Detecting Features , 2000, DAGM-Symposium.

[14]  Michael Felsberg,et al.  The monogenic signal , 2001, IEEE Trans. Signal Process..

[15]  Ron Kimmel,et al.  A general framework for low level vision , 1998, IEEE Trans. Image Process..

[16]  Hans Knutsson,et al.  Representation and learning of invariance , 1994, Proceedings of 1st International Conference on Image Processing.

[17]  G. Winkler,et al.  Smoothers for Discontinuous Signals , 2002 .

[18]  Tony F. Chan,et al.  Variational Restoration of Nonflat Image Features: Models and Algorithms , 2001, SIAM J. Appl. Math..

[19]  Joachim Weickert,et al.  Theoretical Foundations of Anisotropic Diffusion in Image Processing , 1994, Theoretical Foundations of Computer Vision.

[20]  Jörg Weule,et al.  Non-Linear Gaussian Filters Performing Edge Preserving Diffusion , 1995, DAGM-Symposium.

[21]  Brigham Narins,et al.  World of mathematics , 2001 .

[22]  Fred Godtliebsen,et al.  A nonlinear gaussian filter applied to images with discontinuities , 1997 .

[23]  Hans Knutsson,et al.  Signal processing for computer vision , 1994 .

[24]  Michael Felsberg,et al.  Anisotropic Channel Filtering , 2003, SCIA.

[25]  Stanley Osher,et al.  Numerical Methods for p-Harmonic Flows and Applications to Image Processing , 2002, SIAM J. Numer. Anal..

[26]  David L. Donoho,et al.  Denoising and robust nonlinear wavelet analysis , 1994, Defense, Security, and Sensing.

[27]  Antonin Chambolle,et al.  Interpreting translation-invariant wavelet shrinkage as a new image smoothing scale space , 2001, IEEE Trans. Image Process..

[28]  M. Felsberg,et al.  The B-Spline Channel Representation: Channel Algebra and Channel Based Diffusion Filtering , 2002 .

[29]  Joachim Weickert,et al.  Correspondences between Wavelet Shrinkage and Nonlinear Diffusion , 2003, Scale-Space.

[30]  Nicholas Ayache,et al.  Uniform Distribution, Distance and Expectation Problems for Geometric Features Processing , 1998, Journal of Mathematical Imaging and Vision.

[31]  Michael Unser,et al.  Splines: a perfect fit for signal and image processing , 1999, IEEE Signal Process. Mag..

[32]  Gösta H. Granlund,et al.  An Associative Perception-Action Structure Using a Localized Space Variant Information Representation , 2000, AFPAC.

[33]  Joachim Weickert,et al.  Recursive Separable Schemes for Nonlinear Diffusion Filters , 1997, Scale-Space.

[34]  Joachim Weickert,et al.  A Review of Nonlinear Diffusion Filtering , 1997, Scale-Space.

[35]  Thierry Blu,et al.  Unifying approach and interface for spline-based snakes , 2001, SPIE Medical Imaging.

[36]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[37]  Björn Johansson Representing Multiple Orientations in 2D with Orientation Channel Histograms , 2002 .

[38]  Ron Kimmel,et al.  Orientation Diffusion or How to Comb a Porcupine , 2002, J. Vis. Commun. Image Represent..

[39]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[40]  Alexandre Pouget,et al.  Probabilistic Interpretation of Population Codes , 1996, Neural Computation.

[41]  G. Granlund In search of a general picture processing operator , 1978 .

[42]  Joachim Lambek,et al.  What is the world of mathematics? , 2004, Ann. Pure Appl. Log..

[43]  Guillermo Sapiro,et al.  Diffusion of General Data on Non-Flat Manifolds via Harmonic Maps Theory: The Direction Diffusion Case , 2000, International Journal of Computer Vision.

[44]  Stephen M. Smith,et al.  SUSAN—A New Approach to Low Level Image Processing , 1997, International Journal of Computer Vision.

[45]  Pietro Perona Orientation diffusions , 1998, IEEE Trans. Image Process..

[46]  Per-Erik Forssén,et al.  Low and Medium Level Vision Using Channel Representations , 2004 .

[47]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[48]  Gösta H. Granlund,et al.  Channel Representation of Colour Images , 2002 .

[49]  Dorin Comaniciu,et al.  Mean shift analysis and applications , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.