Interval-Valued Representability of Qualitative Data: the Continuous Case

In the framework of the representability of ordinal qualitative data by means of interval-valued correspondences, we study interval orders defined on a nonempty set X. We analyse the continuous case, that corresponds to a set endowed with a topology that furnishes an idea of continuity, so that it becomes natural to ask for the existence of quantifications based on interval-valued mappings from the set of data into the real numbers under preservation of order and topology. In the present paper we solve a continuous representability problem for interval orders. We furnish a characterization of the representability of an interval order through a pair of continuous real-valued functions so that each element in X has associated in a continuous manner a characteristic interval or equivalently a symmetric triangular fuzzy number.

[1]  Jean-Paul Doignon,et al.  On realizable biorders and the biorder dimension of a relation , 1984 .

[2]  G. Bosi,et al.  Representing preferences with nontransitive indifference by a single real-valued function☆ , 1995 .

[3]  Didier Dubois,et al.  Fuzzy sets and their applications: Vilem Novak, translated from Czechoslovakian. Bristol and Philadelphia: Adam Hilger, 1989, 248 pages. , 1991 .

[4]  Juan Carlos Candeal,et al.  Representations of ordered semigroups and the Physical concept of Entropy , 2004 .

[5]  Peter C. Fishburn,et al.  Intransitive Indifference in Preference Theory: A Survey , 1970, Oper. Res..

[6]  Johann Pfanzagl,et al.  Theory of measurement , 1970 .

[7]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[8]  D. Bridges Representing interval orders by a single real-valued function , 1985 .

[9]  G. Debreu Mathematical Economics: Continuity properties of Paretian utility , 1964 .

[10]  Jaap Van Brakel,et al.  Foundations of measurement , 1983 .

[11]  D. Bridges,et al.  Representations of Preferences Orderings , 1995 .

[12]  Gerhard Herden,et al.  The Debreu Gap Lemma and some generalizations , 2004 .

[13]  E. Induráin,et al.  Representability of Interval Orders , 1998 .

[14]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[15]  Juan Carlos Candeal,et al.  Existence of additive utility on positive semigroups:An elementary proof , 1998, Ann. Oper. Res..

[16]  G. Bosi,et al.  Continuous representability of interval orders and biorders , 2007 .

[17]  D. Bridges Numerical representation of interval orders on a topological space , 1986 .

[18]  Gianni Bosi Continuous representations of interval orders based on induced preorders , 1995 .

[19]  Candeal,et al.  Weak Extensive Measurement without Translation-Invariance Axioms. , 1998, Journal of mathematical psychology.

[20]  E. Lieb,et al.  A Guide to Entropy and the Second Law of Thermodynamics , 1998, math-ph/9805005.

[21]  S. Angus,et al.  Foundations of Thermodynamics , 1958, Nature.

[22]  G. Debreu ON THE CONTINUITY PROPERTIES OF PARETIAN UTILITY , 1963 .

[23]  L. Nachbin Topology and order , 1965 .

[24]  G. Debreu Mathematical Economics: Representation of a preference ordering by a numerical function , 1983 .

[25]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[26]  Juan Carlos Candeal,et al.  Numerical Representations of Interval Orders , 2001, Order.

[27]  T. William,et al.  Surveys in Combinatorics, 1997: New Perspectives on Interval Orders and Interval Graphs , 1997 .

[28]  A. W. Roscoe,et al.  Topology and category theory in computer science , 1991 .

[29]  Subbarao Kambhampati,et al.  Planning and Scheduling , 1997, The Computer Science and Engineering Handbook.

[30]  V. Novák Fuzzy sets and their applications , 1989 .

[31]  Peter C. Fishburn,et al.  Utility theory for decision making , 1970 .

[32]  E. Induráin,et al.  Continuous representability of interval orders , 2004 .

[33]  Juan Carlos Candeal,et al.  Topological Additively Representable Semigroups , 1997 .

[34]  Esteban Induráin,et al.  Expected utility from additive utility on semigroups , 2002 .

[35]  B. Girotto,et al.  On the axiomatic treatment of the ϕ-mean , 1995 .

[36]  A. Chateauneuf Continuous representation of a preference relation on a connected topological space , 1987 .

[37]  Peter C. Fishburn,et al.  Preference Structures and Their Numerical Representations , 1999, Theor. Comput. Sci..

[38]  Vladik Kreinovich Interval Methods in Knowledge Representation (abstracts of recent papers) , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[39]  P. Fishburn Intransitive indifference with unequal indifference intervals , 1970 .

[40]  P. Fishburn Nontransitive preferences in decision theory , 1991 .

[41]  Donald W. Katzner Static Demand Theory , 1970 .

[42]  P. Hammond,et al.  Handbook of Utility Theory , 2004 .

[43]  B. Mirkin Description of some relations on the set of real-line intervals , 1972 .

[44]  E. Induráin,et al.  Existence of Additive and Continuous Utility Functions on Ordered Semigroups , 1999 .

[45]  F. Roberts On nontransitive indifference , 1970 .

[46]  A. Beardon,et al.  The non-existence of a utility function and the structure of non-representable preference relations , 2002 .

[47]  Heinz J. Skala,et al.  Non-Archimedean Utility Theory , 1975 .

[48]  Madan M. Gupta,et al.  Introduction to Fuzzy Arithmetic , 1991 .

[49]  A. Tversky Intransitivity of preferences. , 1969 .

[50]  Juan Carlos Candeal,et al.  Representability of binary relations through fuzzy numbers , 2006, Fuzzy Sets Syst..

[51]  P. Fishburn Interval representations for interval orders and semiorders , 1973 .

[52]  Juan Carlos Candeal-Haro,et al.  UTILITY FUNCTIONS ON PARTIALLY ORDERED TOPOLOGICAL GROUPS , 1992 .

[53]  D. Dubois,et al.  Operations on fuzzy numbers , 1978 .

[54]  Michael Pinedo,et al.  Current trends in deterministic scheduling , 1997, Ann. Oper. Res..

[55]  G. Mehta Preference and utility , 1998 .

[56]  Michael Pinedo,et al.  Planning and Scheduling in Manufacturing and Services , 2008 .

[57]  Peter C. Fishburn,et al.  Interval graphs and interval orders , 1985, Discret. Math..

[58]  A. Kaufmann,et al.  Introduction to fuzzy arithmetic : theory and applications , 1986 .