Association analysis identifies 65 new breast cancer risk loci

Gary D Bader | Jaana M. Hartikainen | Jeffery M. Meyer | Jack A. Taylor | A. Whittemore | J. Manson | W. Willett | S. Cross | M. Lux | M. Beckmann | P. Fasching | C. Weinberg | A. Børresen-Dale | E. Ziv | S. Seal | N. Rahman | D. Noh | C. Vachon | Jingmei Li | K. Czene | P. Hall | K. Humphreys | V. Pankratz | A. Hein | J. Olson | F. Couch | A. Schneeweiss | H. Brenner | J. Chang-Claude | S. Chanock | M. García-Closas | B. Bonanni | R. Hoover | D. Hunter | O. Olopade | A. Wolk | J. Benítez | P. Neven | R. Prentice | Sofia Khan | G. Giles | J. Hopper | C. Haiman | E. John | T. Dörk | M. Southey | A. Lophatananon | L. Marchand | A. Cox | D. Easton | P. Kraft | R. Tamimi | G. Rennert | R. Scott | A. Hollestelle | Chen-Yang Shen | A. Broeks | S. Lakhani | P. Pharoah | D. Lambrechts | J. Peto | C. Amos | S. Hankinson | E. Khusnutdinova | A. Antoniou | D. Stram | A. Brooks-Wilson | J. Spinelli | J. Carroll | D. Cox | Zhaoming Wang | N. Orr | K. Doheny | F. Schumacher | Daniel Vincent | H. Brauch | M. Sherman | V. Kristensen | C. Sohn | P. Hillemanns | J. Long | X. Shu | Yu-tang Gao | W. Zheng | A. Ziogas | H. Anton-Culver | P. Guénel | U. Menon | A. Dunning | P. Brennan | S. Sangrajrang | V. Gaborieau | D. Eccles | O. Fletcher | N. Johnson | G. Chenevix-Trench | S. Bojesen | B. Nordestgaard | L. Brinton | J. Lissowska | H. Nevanlinna | D. Kang | K. Yoo | N. Bogdanova | P. Schürmann | R. Tollenaar | P. Devilee | I. Brock | R. Milne | A. González-Neira | U. Hamann | J. Beesley | A. Mannermaa | V. Kosma | J. Hartikainen | K. McCue | M. Shah | N. Miller | M. Kerin | S. Stewart-Brown | K. Muir | S. Lindström | J. Cunningham | C. Clarke | L. Bernstein | H. Ahsan | Sung-Won Kim | Á. Carracedo | A. Lindblom | K. Michailidou | M. Ghoussaini | J. Dennis | M. Schmidt | M. Bolla | Qin Wang | E. Dicks | Andrew Lee | K. Aittomäki | C. Blomqvist | Q. Waisfisz | H. Meijers-Heijboer | M. Adank | A. Meindl | R. Schmutzler | E. Makalic | D. Schmidt | F. Bacot | D. Tessier | C. Luccarini | S. F. Nielsen | H. Flyger | A. Rudolph | D. Flesch‐Janys | T. Truong | B. Burwinkel | J. I. Pérez | E. Sawyer | I. Tomlinson | I. Andrulis | J. Knight | G. Glendon | A. Mulligan | S. Margolin | M. Hooning | J. Stone | L. Haeberle | A. Ekici | V. Arndt | C. Stegmaier | A. Swerdlow | J. Figueroa | M. Goldberg | M. Dumont | R. Winqvist | K. Pylkäs | A. Jukkola-Vuorinen | M. Grip | T. Brüning | P. Radice | P. Peterlongo | S. Manoukian | C. Seynaeve | A. Jakubowska | J. Lubiński | N. Antonenkova | K. Matsuo | Hidemi Ito | H. Iwata | A. Wu | C. Tseng | H. Cai | S. Teo | C. Yip | M. Hartman | H. Miao | Chia-Ni Hsiung | J. Mckay | Q. Cai | M. Shrubsole | J. Simard | J. Tyrer | M. Eriksson | I. Dos-Santos-Silva | E. Rutgers | M. Schoemaker | H. Wildiers | Grethe I. Grenaker Alnæs | P. Menéndez | S. Neuhausen | C. V. van Asperen | M. Bermisheva | H. Christiansen | T. Park-Simon | D. Torres | H. Ulmer | U. Eilber | S. Wang-gohrke | A. V. D. van den Ouweland | M. Dwek | C. Baynes | S. Edwards | F. Canzian | S. Gapstur | S. Loibl | D. J. Van Den Berg | K. Chia | M. Untch | H. Finucane | M. Hou | G. Ursin | P. Auer | J. Taylor | R. Kaaks | Jane M. Romm | K. Jones | R. Keeman | S. Tsugane | Sue-Kyung Park | C. Engel | Ying Zheng | S. Cornelissen | Jyh‐cherng Yu | B. Arun | K. Aronson | S. Hart | A. Smeets | J. French | Jong Won Lee | B. Zhu | R. Lloyd | T. Chan | D. Plaseska-Karanfilska | E. Hahnen | K. Malone | M. Ruebner | M. Kabisch | K. Ruddy | W. Janni | M. Daly | R. B. van der Luijt | Camilla Wendt | S. Brucker | A. M. McCart Reed | D. Goldgar | Shirley Hui | E. Pugh | Katja Butterbach | A. Droit | J. García-Saenz | D. Sandler | B. Hicks | Lucy Y. Xia | T. Rüdiger | L. Fritschi | P. Broberg | J. Brand | M. Terry | T. Yamaji | M. Iwasaki | Michael E. Jones | H. Rennert | F. Lejbkowicz | J. Heyworth | Christopher Scott | S. Mariapun | Min Hyuk Lee | R. MacInnis | N. Håkansson | A. Grundy | J. Gronwald | M. Gago-Domínguez | M. Martínez | J. Castelao | L. van der Kolk | Ji-Yeob Choi | Y. Kasuga | T. Maishman | L. Durcan | H. Olsson | M. Gabrielson | A. Norman | M. Gaudet | C. Olswold | P. Soucy | T. Caldés | A. Kwong | A. Romero | C. Mulot | C. Mclean | L. Fachal | Jamie Allen | Myrto Barrdahl | S. Behrens | B. Carter | E. Cordina-Duverger | A. Eliassen | Carolina Ellberg | V. Georgoulias | Guanmengqian Huang | K. Kaczmarek | Johanna I. Kiiski | Ute Krüger | Eunjung Lee | J. Lilyquist | W. Lo | D. Mavroudis | M. Pinchev | N. Presneau | B. Rack | V. Rhenius | E. Saloustros | K. Thöne | Xiaohong R. Yang | K. Phillips | Xia Jiang | Dylan M Glubb | S. Kar | Audrey Lemaçon | Asha Rostamianfar | Xiao Qing Chen | M. Adams | T. Cheng | M. Collee | D. Conroy | Mingajeva Elvira | Nathalie J. Hamel | P. Harrington | Dona N. Ho | J. Ishiguro | C. Lee | E. Ma | I. M. Kostovska | N. A. Mohd Taib | Darya Prokofieva | P. Sharma | Grace Sheng | H. Surowy | Maria Tengström | Somchai Thanasitthichai | L. Tong | Jason Vollenweider | Judith S. Brand | Don M. Conroy | Michael E. Jones | M. H. Lee | A. Lee | J. E. Castelao | Yu-Tang Gao | Bin Zhu | J. Kiiski | I. dos-Santos-Silva | Jong Won Lee | Priyanka Sharma | D. Prokofieva | M. Tengström | C. Mclean | T. Rüdiger | J. Stone | Lucy Y. Xia | Marcia Adams | Anne Grundy | Thérèse Truong | P. Hall | Yu-Tang Gao | J. I. Peŕez | Mervi Grip | Yu-Tang Gao | R. Scott | D. Hunter | H. Cai | R. Scott | Margriet Collee | P. Brennan | Qin Wang | D. Flesch-Janys | Thérèse Truong | Curtis L. Olswold | A. Wu | R. Scott | D. Plaseska‐Karanfilska | Diana Torres | Lucy Xia | Katarzyna Kaczmarek | Jyh-Cherng Yu

[1]  Dennis J. Hazelett,et al.  The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers , 2016, Cancer Epidemiology, Biomarkers & Prevention.

[2]  Arnaud Droit,et al.  metagene Profiles Analyses Reveal Regulatory Element’s Factor-Specific Recruitment Patterns , 2016, PLoS Comput. Biol..

[3]  N. Rosenfeld,et al.  The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes , 2016, Nature Communications.

[4]  David C. Jones,et al.  Landscape of somatic mutations in 560 breast cancer whole genome sequences , 2016, Nature.

[5]  Steven J. M. Jones,et al.  Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer , 2015, Cell.

[6]  Yakir A Reshef,et al.  Partitioning heritability by functional annotation using genome-wide association summary statistics , 2015, Nature Genetics.

[7]  Eric S. Lander,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2015, Cell.

[8]  Patrick Neven,et al.  Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer , 2015 .

[9]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[10]  J. Hirschhorn,et al.  Biological interpretation of genome-wide association studies using predicted gene functions , 2015, Nature Communications.

[11]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[12]  Jaana M. Hartikainen,et al.  Evidence that breast cancer risk at the 2q35 locus is mediated through IGFBP5 regulation , 2014, Nature Communications.

[13]  D. Noh,et al.  Genome-wide association analysis in East Asians identifies breast cancer susceptibility loci at 1q32.1, 5q14.3 and 15q26.1 , 2014, Nature Genetics.

[14]  K. Tan,et al.  Global view of enhancer–promoter interactome in human cells , 2014, Proceedings of the National Academy of Sciences.

[15]  Y. Lee,et al.  Genome-wide pathway analysis of breast cancer , 2014, Tumor Biology.

[16]  Jana Marie Schwarz,et al.  MutationTaster2: mutation prediction for the deep-sequencing age , 2014, Nature Methods.

[17]  Ross M. Fraser,et al.  A General Approach for Haplotype Phasing across the Full Spectrum of Relatedness , 2014, PLoS genetics.

[18]  T. Meehan,et al.  An atlas of active enhancers across human cell types and tissues , 2014, Nature.

[19]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[20]  Peggy Hall,et al.  The NHGRI GWAS Catalog, a curated resource of SNP-trait associations , 2013, Nucleic Acids Res..

[21]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[22]  M. Lupien,et al.  Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits , 2014, Genome research.

[23]  C. Heldin,et al.  Targeting the PDGF signaling pathway in tumor treatment , 2013, Cell Communication and Signaling.

[24]  R. Young,et al.  Super-Enhancers in the Control of Cell Identity and Disease , 2013, Cell.

[25]  Hiroshi Tanaka,et al.  PathAct: a novel method for pathway analysis using gene expression profiles , 2013, Bioinformation.

[26]  Wei Lu,et al.  A common deletion in the APOBEC3 genes and breast cancer risk. , 2013, Journal of the National Cancer Institute.

[27]  Jaana M. Hartikainen,et al.  Large-scale genotyping identifies 41 new loci associated with breast cancer risk , 2013, Nature Genetics.

[28]  A. McKenna,et al.  Integrative eQTL-Based Analyses Reveal the Biology of Breast Cancer Risk Loci , 2013, Cell.

[29]  Tom R. Gaunt,et al.  Predicting the Functional, Molecular, and Phenotypic Consequences of Amino Acid Substitutions using Hidden Markov Models , 2012, Human mutation.

[30]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumours , 2013 .

[31]  Jake K. Byrnes,et al.  Bayesian refinement of association signals for 14 loci in 3 common diseases , 2012, Nature Genetics.

[32]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[33]  J. Miller,et al.  Predicting the Functional Effect of Amino Acid Substitutions and Indels , 2012, PloS one.

[34]  Bronwen L. Aken,et al.  GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.

[35]  J. Marchini,et al.  Fast and accurate genotype imputation in genome-wide association studies through pre-phasing , 2012, Nature Genetics.

[36]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumors , 2012, Nature.

[37]  Pedro C. Avila,et al.  Fast and accurate inference of local ancestry in Latino populations , 2012, Bioinform..

[38]  F. Markowetz,et al.  The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups , 2012, Nature.

[39]  D. Noh,et al.  Genome-Wide Association Study in East Asians Identifies Novel Susceptibility Loci for Breast Cancer , 2012, PLoS genetics.

[40]  Andrey A. Shabalin,et al.  Matrix eQTL: ultra fast eQTL analysis via large matrix operations , 2011, Bioinform..

[41]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[42]  C. Sander,et al.  Predicting the functional impact of protein mutations: application to cancer genomics , 2011, Nucleic acids research.

[43]  Peilin Jia,et al.  Gene set analysis of genome-wide association studies: methodological issues and perspectives. , 2011, Genomics.

[44]  G. Getz,et al.  GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers , 2011, Genome Biology.

[45]  Raymond K. Auerbach,et al.  A User's Guide to the Encyclopedia of DNA Elements (ENCODE) , 2011, PLoS biology.

[46]  K. Buetow,et al.  Pathways of Distinction Analysis: A New Technique for Multi–SNP Analysis of GWAS Data , 2010, PLoS genetics.

[47]  Wei Zheng,et al.  dmGWAS: dense module searching for genome-wide association studies in protein-protein interaction networks , 2011, Bioinform..

[48]  H. Hakonarson,et al.  Analysing biological pathways in genome-wide association studies , 2010, Nature Reviews Genetics.

[49]  G. Abecasis,et al.  MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes , 2010, Genetic epidemiology.

[50]  Gary D Bader,et al.  Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation , 2010, PloS one.

[51]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[52]  D. Easton,et al.  Evaluating the power to discriminate between highly correlated SNPs in genetic association studies , 2010, Genetic epidemiology.

[53]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[54]  N. Turner,et al.  Fibroblast growth factor signalling: from development to cancer , 2010, Nature Reviews Cancer.

[55]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[56]  Yurii S. Aulchenko,et al.  ProbABEL package for genome-wide association analysis of imputed data , 2010, BMC Bioinformatics.

[57]  Gary D Bader,et al.  NetPath: a public resource of curated signal transduction pathways , 2010, Genome Biology.

[58]  Justin C. Fay,et al.  Identification of deleterious mutations within three human genomes. , 2009, Genome research.

[59]  Joaquín Dopazo,et al.  Gene set-based analysis of polymorphisms: finding pathways or biological processes associated to traits in genome-wide association studies , 2009, Nucleic Acids Res..

[60]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[61]  P. Ridker,et al.  Genome-wide association studies identify novel loci associated with age at menarche and age at natural menopause , 2009, Nature Genetics.

[62]  C. Béroud,et al.  Human Splicing Finder: an online bioinformatics tool to predict splicing signals , 2009, Nucleic acids research.

[63]  Tsutomu Ohta,et al.  PH Domain-Only Protein PHLDA3 Is a p53-Regulated Repressor of Akt , 2009, Cell.

[64]  Kenneth H. Buetow,et al.  PID: the Pathway Interaction Database , 2008, Nucleic Acids Res..

[65]  S. Henikoff,et al.  Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm , 2009, Nature Protocols.

[66]  Kai Wang,et al.  Pathway-based approaches for analysis of genomewide association studies. , 2007, American journal of human genetics.

[67]  G. Abecasis,et al.  Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies , 2006, Nature Genetics.

[68]  Lincoln Stein,et al.  Reactome: a knowledgebase of biological pathways , 2004, Nucleic Acids Res..

[69]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[70]  P. Karp,et al.  Computational prediction of human metabolic pathways from the complete human genome , 2004, Genome Biology.

[71]  S. Fox,et al.  CITED4 Inhibits Hypoxia-Activated Transcription in Cancer Cells, and Its Cytoplasmic Location in Breast Cancer Is Associated with Elevated Expression of Tumor Cell Hypoxia-Inducible Factor 1α , 2004, Cancer Research.

[72]  Louise R Howe,et al.  Wnt Signaling and Breast Cancer , 2004, Cancer biology & therapy.

[73]  Terrence S. Furey,et al.  The UCSC Table Browser data retrieval tool , 2004, Nucleic Acids Res..

[74]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[75]  M. Campbell,et al.  PANTHER: a library of protein families and subfamilies indexed by function. , 2003, Genome research.

[76]  Christopher B. Burge,et al.  Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals , 2003, RECOMB '03.

[77]  Yunping Lin,et al.  Pidd, a new death-domain–containing protein, is induced by p53 and promotes apoptosis , 2000, Nature Genetics.

[78]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.