One-Dimensional Nanomaterials for Energy Applications

Energy crisis is a world-wide issue threatening the sustainability and development of human society; however, it is still challenging to harvest renewable energy resources, such as the solar, mechanical, and thermal means, in a competitive low-cost and efficient manner. In this regard, due to the excellent optical, electrical, mechanical, and thermal properties, one-dimensional (1D) nanomaterials have been well explored to enhance the energy harvesting and storage efficiency. This chapter reviews the fundamentals and the most recent developments in the preparation methods, basic property characterizations as well as the applications of 1D nanostructured materials in the energy transformation into electricity by solar cells, piezoelectric generators, thermal conversion devices, and energy storage in fuel cells, Li-ion batteries, and supercapacitors. These materials engineered with fascinating properties hold the promise of enabling low-cost, high-efficiency, smart renewable and clean energy harvesting as well as the storage, which would contribute greatly to the postfossil energy era.

[1]  Zhong Lin Wang,et al.  Vertically aligned CdSe nanowire arrays for energy harvesting and piezotronic devices. , 2012, ACS nano.

[2]  M. Dresselhaus,et al.  Recent developments in thermoelectric materials , 2003 .

[3]  R. LaPierre,et al.  Sulfur passivation and contact methods for GaAs nanowire solar cells , 2011, Nanotechnology.

[4]  Li Shi,et al.  Measurement and analysis of thermopower and electrical conductivity of an indium antimonide nanowire from a vapor-liquid-solid method , 2007 .

[5]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[6]  Adam Heller,et al.  Hydrogen-Evolving Solar Cells , 1984, Science.

[7]  Peng Wang,et al.  CuO/ZnO core/shell heterostructure nanowire arrays: synthesis, optical property, and energy application. , 2010, Chemical communications.

[8]  P. Chakrabarti,et al.  Time-dependent degradation of Pt/ZnO nanoneedle rectifying contact based piezoelectric nanogenerator , 2011 .

[9]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[10]  Yi Cui,et al.  High capacity Li ion battery anodes using ge nanowires. , 2008, Nano letters.

[11]  Wenjun Zhang,et al.  A Free‐Standing Pt‐Nanowire Membrane as a Highly Stable Electrocatalyst for the Oxygen Reduction Reaction , 2011, Advanced materials.

[12]  Adrian Ilinca,et al.  Energy storage systems—Characteristics and comparisons , 2008 .

[13]  Aleksandra Radenovic,et al.  ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. , 2006, The journal of physical chemistry. B.

[14]  Jinghua Guo,et al.  One‐Dimensional Quantum‐Confinement Effect in α‐Fe2O3 Ultrafine Nanorod Arrays , 2005 .

[15]  Zhi-Gang Yu,et al.  Core-shell nanorods for efficient photoelectrochemical hydrogen production. , 2005 .

[16]  S. Yannopoulos,et al.  Laser-Assisted Growth of t-Te Nanotubes and their Controlled Photo-induced Unzipping to ultrathin core-Te/sheath-TeO2 Nanowires , 2013, Scientific Reports.

[17]  Wuzong Zhou,et al.  Formation, morphology control and applications of anodic TiO2 nanotube arrays , 2011 .

[18]  Chen Xu,et al.  Toward Robust Nanogenerators Using Aluminum Substrate , 2012, Advanced materials.

[19]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[20]  Jared J. Hou,et al.  Manipulated Growth of GaAs Nanowires: Controllable Crystal Quality and Growth Orientations via a Supersaturation-Controlled Engineering Process , 2012 .

[21]  A. Shakouri Recent Developments in Semiconductor Thermoelectric Physics and Materials , 2011 .

[22]  S. Gradečak,et al.  Effects of gold diffusion on n-type doping of GaAs nanowires. , 2010, Nano letters.

[23]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[24]  Nathan S. Lewis,et al.  Solar energy conversion. , 2007 .

[25]  John A Rogers,et al.  Formation of high aspect ratio GaAs nanostructures with metal-assisted chemical etching. , 2011, Nano letters.

[26]  Yat Li,et al.  Hydrogen generation from photoelectrochemical water splitting based on nanomaterials , 2009 .

[27]  Joop Schoonman,et al.  Solar hydrogen production with nanostructured metal oxides , 2008 .

[28]  Juri Barthel,et al.  Direct imaging of single Au atoms within GaAs nanowires. , 2012, Nano letters.

[29]  Xuebin Wang,et al.  Electricity Generation based on One‐Dimensional Group‐III Nitride Nanomaterials , 2010, Advanced materials.

[30]  S. Senz,et al.  Epitaxial growth of silicon nanowires using an aluminium catalyst , 2006, Nature nanotechnology.

[31]  Wenzheng Li,et al.  Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. , 2007, Angewandte Chemie.

[32]  Li Shi,et al.  Thermoelectric properties of individual electrodeposited bismuth telluride nanowires , 2005 .

[33]  Jared J. Hou,et al.  Stoichiometric effect on electrical, optical, and structural properties of composition-tunable In(x)Ga(1-x)As nanowires. , 2012, ACS nano.

[34]  Zhong Lin Wang,et al.  Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. , 2012, ACS nano.

[35]  Piotr Zelenay,et al.  A class of non-precious metal composite catalysts for fuel cells , 2006, Nature.

[36]  Jun-Han Huang,et al.  Energy Harvesting from the Obliquely Aligned InN Nanowire Array with a Surface Electron‐Accumulation Layer , 2013, Advanced materials.

[37]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[38]  Zhong Lin Wang,et al.  BaTiO3 Nanotubes-Based Flexible and Transparent Nanogenerators. , 2012, The journal of physical chemistry letters.

[39]  Zhong Lin Wang,et al.  Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope , 2004 .

[40]  L. Lauhon,et al.  Three-dimensional nanoscale composition mapping of semiconductor nanowires. , 2006, Nano letters.

[41]  Michael Grätzel,et al.  Solar energy conversion by dye-sensitized photovoltaic cells. , 2005, Inorganic chemistry.

[42]  Peidong Yang,et al.  Direct Observation of Vapor-Liquid-Solid Nanowire Growth , 2001 .

[43]  E. Kaxiras,et al.  Natural dyes adsorbed on TiO2 nanowire for photovoltaic applications: enhanced light absorption and ultrafast electron injection. , 2008, Nano letters.

[44]  Huajian Gao,et al.  Nanowire failure: long = brittle and short = ductile. , 2012, Nano letters.

[45]  D. Thompson,et al.  GaAs core--shell nanowires for photovoltaic applications. , 2009, Nano letters.

[46]  Zhiyong Fan,et al.  Efficient light absorption with integrated nanopillar/nanowell arrays for three-dimensional thin-film photovoltaic applications. , 2013, ACS nano.

[47]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[48]  M. Itkis,et al.  High Performance Hydrogen Fuel Cells with Ultralow Pt Loading Carbon Nanotube Thin Film Catalysts , 2007 .

[49]  Gengchiau Liang,et al.  Geometry effects on thermoelectric properties of silicon nanowires based on electronic band structures , 2010 .

[50]  E. Pop,et al.  Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires. , 2010, Nano letters.

[51]  N. Lewis Toward Cost-Effective Solar Energy Use , 2007, Science.

[52]  Zhiyong Fan,et al.  Strong light absorption of self-organized 3-D nanospike arrays for photovoltaic applications. , 2011, ACS nano.

[53]  M. Kiskinova,et al.  Contactless monitoring of the diameter-dependent conductivity of GaAs nanowires , 2010 .

[54]  Zhiyong Fan,et al.  Ordered arrays of dual-diameter nanopillars for maximized optical absorption. , 2010, Nano letters.

[55]  Eray S. Aydil,et al.  Electron transport and recombination in polycrystalline TiO2 nanowire dye-sensitized solar cells , 2007 .

[56]  Jing Li,et al.  Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells , 2010 .

[57]  T. Fukui,et al.  Growth of Core–Shell InP Nanowires for Photovoltaic Application by Selective-Area Metal Organic Vapor Phase Epitaxy , 2009 .

[58]  Margaret A. K. Ryan,et al.  Electrodeposition of Thermoelectric Superlattice Nanowires , 2007 .

[59]  P. Yang,et al.  Thermoelectric properties of p-type PbSe nanowires , 2009 .

[60]  Fei Ma,et al.  Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode. , 2013, Nano letters.

[61]  Kui‐Qing Peng,et al.  Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching , 2008 .

[62]  S. Anand,et al.  High optical quality InP-based nanopillars fabricated by a top-down approach. , 2011, Nano letters.

[63]  J. Melngailis,et al.  Diameter dependent transport properties of gallium nitride nanowire field effect transistors , 2007 .

[64]  W. Buhro,et al.  Solution–Liquid–Solid Growth of Soluble GaAs Nanowires , 2003 .

[65]  Xiangfeng Duan,et al.  Synthesis and optical properties of gallium arsenide nanowires , 2000 .

[66]  Ya Yang,et al.  Flexible and Transparent Nanogenerators Based on a Composite of Lead‐Free ZnSnO3 Triangular‐Belts , 2012, Advanced materials.

[67]  Craig A. Grimes,et al.  Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length , 2006 .

[68]  T. Fukui,et al.  Zinc blende and wurtzite crystal phase mixing and transition in indium phosphide nanowires. , 2011, Nano letters.

[69]  M. Dresselhaus,et al.  Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction , 2005 .

[70]  Zhong Lin Wang,et al.  Engineering of efficiency limiting free carriers and an interfacial energy barrier for an enhancing piezoelectric generation , 2013 .

[71]  Jared J. Hou,et al.  Controllable p-n switching behaviors of GaAs nanowires via an interface effect. , 2012, ACS nano.

[72]  Chennupati Jagadish,et al.  Phase perfection in zinc Blende and Wurtzite III-V nanowires using basic growth parameters. , 2010, Nano letters.

[73]  Jennifer K. Hensel,et al.  Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO(2) nanostructures for photoelectrochemical solar hydrogen generation. , 2010, Nano letters.

[74]  Bernard Nysten,et al.  Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy , 2004 .

[75]  S. Hung Generation of Piezoelectricity by Deflecting Nanorods Vertically on GaN Template , 2011 .

[76]  Yonggang Zhu,et al.  Thermal properties of bi nanowire arrays with different orientations and diameters. , 2006, The journal of physical chemistry. B.

[77]  Lijie Ci,et al.  Synthesis of hybrid nanowire arrays and their application as high power supercapacitor electrodes. , 2008, Chemical communications.

[78]  John E Sader,et al.  Mechanical properties of ZnO nanowires. , 2008, Physical review letters.

[79]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[80]  N. Myung,et al.  Fabrication Method for Thermoelectric Nanodevices , 2005 .

[81]  Dan Zhang,et al.  Photoluminescence investigation on the gas sensing property of ZnO nanorods prepared by plasma-enhanced CVD method , 2010 .

[82]  Bing Tan,et al.  Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. , 2008, Nano letters.

[83]  Long Lin,et al.  Pyroelectric nanogenerators for harvesting thermoelectric energy. , 2012, Nano letters.

[84]  U. Ramamurty,et al.  Mechanical properties of inorganic nanowire reinforced polymer–matrix composites , 2006 .

[85]  A. Javey,et al.  Molecular monolayers for conformal, nanoscale doping of InP nanopillar photovoltaics , 2011 .

[86]  Jan Augustynski,et al.  Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films , 1988 .

[87]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[88]  A. Djurišić,et al.  GaN-nanowire-based dye-sensitized solar cells , 2010 .

[89]  Zhong Lin Wang,et al.  Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment. , 2006, Nano letters.

[90]  Zhenan Bao,et al.  Hybrid nanostructured materials for high-performance electrochemical capacitors , 2013 .

[91]  Yu-Ming Lin,et al.  Thermoelectric properties of superlattice nanowires , 2003 .

[92]  E. Bakkers,et al.  Remote p-doping of InAs nanowires. , 2007, Nano letters.

[93]  Vidhya Chakrapani,et al.  Band‐Edge Engineered Hybrid Structures for Dye‐Sensitized Solar Cells Based on SnO2 Nanowires , 2008 .

[94]  Fang Qian,et al.  Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. , 2009, Nano letters.

[95]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[96]  O. Brandt,et al.  Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications. , 2011, Nano letters.

[97]  Fumin Wang,et al.  Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film. , 2006, The journal of physical chemistry. B.

[98]  A. Goetzberger,et al.  Photovoltaic materials, history, status and outlook , 2003 .

[99]  Ning Wang,et al.  A General Synthetic Route to III-V Compound Semiconductor Nanowires** , 2001 .

[100]  E. Boyden,et al.  Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis. , 2011, Nature materials.

[101]  Zhong Lin Wang,et al.  Self-powered nanowire devices. , 2010, Nature nanotechnology.

[102]  Lei Jiang,et al.  Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[103]  J. Hsu,et al.  Correlated piezoelectric and electrical properties in individual ZnO nanorods. , 2008, Nano letters.

[104]  D. Barreca,et al.  The potential of supported Cu2O and CuO nanosystems in photocatalytic H2 production. , 2009, ChemSusChem.

[105]  Craig A. Grimes,et al.  Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells , 2007 .

[106]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[107]  Zhiyong Fan,et al.  Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. , 2009, Nature materials.

[108]  Jinhui Song,et al.  Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices , 2007 .

[109]  Jeunghee Park,et al.  Single-crystalline gallium-doped indium oxide nanowires , 2004 .

[110]  P. Voorhees,et al.  Catalyst incorporation at defects during nanowire growth. , 2012, Nano letters.

[111]  Craig A. Grimes,et al.  Recent Advances in the Use of TiO2 Nanotube and Nanowire Arrays for Oxidative Photoelectrochemistry , 2009 .

[112]  Guanghai Li,et al.  Diameter-depended thermal expansion properties of Bi nanowire arrays , 2005 .

[113]  Yaguang Wei,et al.  Integrated multilayer nanogenerator fabricated using paired nanotip-to-nanowire brushes. , 2008, Nano letters.

[114]  Fang Qian,et al.  Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. , 2010, Nano letters.

[115]  J. Petta,et al.  Correlating the nanostructure and electronic properties of InAs nanowires. , 2009, Nano letters.

[116]  Han‐Ki Kim,et al.  Charge‐Generating Mode Control in High‐Performance Transparent Flexible Piezoelectric Nanogenerators , 2011 .

[117]  Ning Han,et al.  Facile synthesis and growth mechanism of Ni-catalyzed GaAs nanowires on non-crystalline substrates , 2011, Nanotechnology.

[118]  Ion Tiginyanu,et al.  Pores in III–V Semiconductors , 2003 .

[119]  H. Nakano,et al.  Synthesis of GaAs nanowires with very small diameters and their optical properties with the radial quantum-confinement effect , 2009 .

[120]  Andrei Ghicov,et al.  Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO(x) structures. , 2009, Chemical communications.

[121]  L. Lauhon,et al.  Alternative catalysts for VSS growth of silicon and germanium nanowires , 2009 .

[122]  M. Sunkara,et al.  WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production , 2009 .

[123]  Anna N. Ivanovskaya,et al.  A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis , 2003 .

[124]  Zhiyong Fan,et al.  Diameter-dependent electron mobility of InAs nanowires. , 2009, Nano letters.

[125]  Bing Tan,et al.  Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. , 2006, The journal of physical chemistry. B.

[126]  Jared J. Hou,et al.  Large-scale and uniform preparation of pure-phase wurtzite GaAs NWs on non-crystalline substrates , 2012, Nanoscale Research Letters.

[127]  Yun Jeong Hwang,et al.  High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. , 2009, Nano letters.

[128]  Yi Cui,et al.  Solution-grown silicon nanowires for lithium-ion battery anodes. , 2010, ACS nano.

[129]  Lars Samuelson,et al.  Solid-phase diffusion mechanism for GaAs nanowire growth , 2004, Microscopy and Microanalysis.

[130]  Long Lin,et al.  Super-Flexible Nanogenerator for Energy Harvesting from Gentle Wind and as an Active Deformation Sensor , 2013 .

[131]  Lei Zhang,et al.  Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. , 2010, Chemical Society reviews.

[132]  S. Kodambaka,et al.  Germanium Nanowire Growth Below the Eutectic Temperature , 2007, Science.

[133]  Enge Wang,et al.  In situ probing mechanical properties of individual tungsten oxide nanowires directly grown on tungsten tips inside transmission electron microscope , 2006 .

[134]  R. M. Sankaran,et al.  Shape-controlled Au particles for InAs nanowire growth. , 2012, Nano letters.

[135]  K. Hara,et al.  A High‐Light‐Harvesting‐Efficiency Coumarin Dye for Stable Dye‐Sensitized Solar Cells , 2007 .

[136]  Sungho V. Park,et al.  Gold Nanotubes with a Nanoporous Wall : Their Ultrathin Platinum Coating and Superior Electrocatalytic Activity toward Methanol Oxidation , 2008 .

[137]  Charles C. Sorrell,et al.  Solar-hydrogen : Unresolved problems in solid-state science , 2005 .

[138]  Jared J. Hou,et al.  GaAs nanowire Schottky barrier photovoltaics utilizing Au–Ga alloy catalytic tips , 2012 .

[139]  Min Gyu Kim,et al.  Silicon nanotube battery anodes. , 2009, Nano letters.

[140]  Zhong Lin Wang,et al.  Nanogenerator based on zinc blende CdTe micro/nanowires , 2013 .

[141]  Mark K. Debe,et al.  Electrocatalyst approaches and challenges for automotive fuel cells , 2012, Nature.

[142]  F. Dimroth,et al.  InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit , 2013, Science.

[143]  Zhiyuan Gao,et al.  GaN nanowire arrays for high-output nanogenerators. , 2010, Journal of the American Chemical Society.

[144]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[145]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[146]  Y. Hwang,et al.  Photoluminescence characteristics of Cd1-xMnxTe single crystals grown by the vertical Bridgman method , 2012, Nanoscale Research Letters.

[147]  Zhong Lin Wang,et al.  Power generation with laterally packaged piezoelectric fine wires. , 2009, Nature nanotechnology.

[148]  Huiyun Liu,et al.  Surface-passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon , 2013, Nature Communications.

[149]  Lars Samuelson,et al.  Growth Mechanism of Self-Catalyzed Group III−V Nanowires , 2010, Nano letters.

[150]  Jared J. Hou,et al.  Crystal phase and growth orientation dependence of GaAs nanowires on NixGay seeds via vapor-solid-solid mechanism , 2011 .

[151]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[152]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[153]  Hu Peng,et al.  Plasma Synthesis of Large Quantities of Zinc Oxide Nanorods , 2007 .

[154]  Bin Wu,et al.  Mechanical properties of ultrahigh-strength gold nanowires , 2005, Nature materials.

[155]  P. Kamat,et al.  Solar Cells by Design: Photoelectrochemistry of TiO2 Nanorod Arrays Decorated with CdSe , 2010 .

[156]  Y. Chiang,et al.  Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes , 2006, Science.

[157]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .