Stochastic stability for discrete-time singular systems with Markov jump parameters

In this paper, stochastic stability for discrete-time singular systems with Markov jump parameters is addressed. We present a set of coupled generalised Lyapunov equations (CGLEs) that serves as a necessary and sufficient condition for stochastic stability. A method for solving the obtained CGLEs is also presented, based on iterations of usual descriptor Lyapunov equations. An illustrative example is included.

[1]  Ruey-Wen Liu,et al.  Existence of state equation representation of linear large-scale dynamical systems , 1973 .

[2]  Andrew A. Goldenberg,et al.  Force and position control of manipulators during constrained motion tasks , 1989, IEEE Trans. Robotics Autom..

[3]  Robert W. NEWCOhlB The Semistate Description of Nonlinear Time-Variable Circuits , 1981 .

[4]  B. Stott,et al.  Power system dynamic response calculations , 1979, Proceedings of the IEEE.

[5]  R. P. Marques,et al.  Discrete-Time Markov Jump Linear Systems , 2004, IEEE Transactions on Automatic Control.

[6]  D. Luenberger,et al.  SINGULAR DYNAMIC LEONTIEF SYSTEMS1 , 1977 .

[7]  E. F. Costa,et al.  Numerical Solution for Linear-Quadratic Control Problems of Markov Jump Linear Systems and Weak Detectability Concept , 2001, 2001 European Control Conference (ECC).

[8]  J. D. Do Val,et al.  Weak detectability and the linear-quadratic control problem of discrete-time Markov jump linear systems , 2002 .

[9]  M. Terra,et al.  A new Lyapunov equation for discrete-time descriptor systems , 2003, Proceedings of the 2003 American Control Conference, 2003..

[10]  Robert W. Newcomb,et al.  Some circuits and systems applications of semistate theory , 1989 .

[11]  Shengyuan Xu,et al.  Robust Control and Filtering of Singular Systems , 2006 .

[12]  João Yoshiyuki Ishihara,et al.  On the Lyapunov theorem for singular systems , 2002, IEEE Trans. Autom. Control..

[13]  David G. Luenberger,et al.  Time-invariant descriptor systems , 1978, Autom..

[14]  R. Newcomb The semistate description of nonlinear time-variable circuits , 1981 .

[15]  E.K. Boukas,et al.  Stabilization of Discontinuous Singular Systems with Markovian Switching and saturating inputs , 2007, 2007 American Control Conference.

[16]  P. Daoutidis,et al.  Feedback control of nonlinear differential-algebraic-equation systems , 1995 .

[17]  Eduardo F. Costa,et al.  An Algorithm for Solving a Perturbed Algebraic Riccati Equation , 2004, Eur. J. Control.

[18]  Duan Guang-ren,et al.  Robust guaranteed cost observer design for uncertain descriptor systems with state delays and Markovian jumping parameters , 2006 .

[19]  H. Hemami,et al.  Modeling and control of constrained dynamic systems with application to biped locomotion in the frontal plane , 1979 .

[20]  Yan-Ming Fu,et al.  Robust guaranteed cost observer design for uncertain descriptor systems with state delays and Markovian jumping parameters , 2006, IMA J. Math. Control. Inf..

[21]  El-Kébir Boukas,et al.  Stochastic Switching Systems: Analysis and Design , 2005 .