Conductivity of Twin-Domain-Wall/Surface Junctions in Ferroelastics: Interplay of Deformation Potential, Octahedral Rotations, Improper Ferroelectricity, and Flexoelectric Coupling

Electronic and structural phenomena at the twin domain wall-surface junctions in the ferroelastic materials are analyzed. Carriers accumulation caused by the strain-induced band structure changes originated via the deformation potential mechanism, structural order parameter gradient, rotostriction and flexoelectric coupling is explored. Approximate analytical results show that inhomogeneous elastic strains, which exist in the vicinity of the twin walls - surface junctions due to the rotostriction coupling, decrease the local band gap via the deformation potential and flexoelectric coupling mechanisms. This is the direct mechanism of the twin walls static conductivity in ferroelastics and, by extension, in multiferroics and ferroelectrics. On the other hand, flexoelectric and rotostriction coupling leads to the appearance of the improper polarization and electric fields proportional to the structural order parameter gradient in the vicinity of the twin walls - surface junctions. The "flexo-roto" fields leading to the carrier accumulation are considered as indirect mechanism of the twin walls conductivity. Comparison of the direct and indirect mechanisms illustrates complex range of phenomena directly responsible for domain walls static conductivity in materials with multiple order parameters.

[1]  Domain wall conduction in multiaxial ferroelectrics , 2011, 1108.5344.

[2]  Hongkun Park,et al.  Ferroelectric phase transition in individual single-crystalline BaTiO3 nanowires. , 2006, Nano letters.

[3]  R. Blinc,et al.  Surface-induced piezomagnetic, piezoelectric, and linear magnetoelectric effects in nanosystems , 2010 .

[4]  G. Stephenson,et al.  Equilibrium and stability of polarization in ultrathin ferroelectric films with ionic surface compensation , 2010, 1101.0298.

[5]  A. Rappe,et al.  Stabilization of monodomain polarization in ultrathin PbTiO3 films. , 2006, Physical review letters.

[6]  A. Kholkin,et al.  Locally induced charged states in La0.89Sr0.11MnO3 single crystals , 2009 .

[7]  Peter Maksymovych,et al.  Dynamic conductivity of ferroelectric domain walls in BiFeO₃. , 2011, Nano letters.

[8]  A. Tagantsev,et al.  Piezoelectricity and flexoelectricity in crystalline dielectrics. , 1986, Physical review. B, Condensed matter.

[9]  Sergei V. Kalinin,et al.  Surface effect on domain wall width in ferroelectrics , 2008, 0802.2559.

[10]  Sergei V. Kalinin,et al.  Atomistic screening mechanism of ferroelectric surfaces: an in situ study of the polar phase in ultrathin BaTiO3 films exposed to H2O. , 2009, Nano letters.

[11]  Z. Fu,et al.  Biaxial stress‐induced giant bandgap shift in BiFeO3 epitaxial films , 2012 .

[12]  F. Seifert,et al.  Strain analysis of phase transitions in (Ca,Sr)TiO3 perovskites , 2001 .

[13]  E. Artacho,et al.  Ferrielectric twin walls in CaTiO3. , 2008, Physical review letters.

[14]  I. Ivanchik,et al.  Encountering domains in ferroelectrics , 1973 .

[15]  E. Furman,et al.  Thermodynamic theory of the lead zirconate-titanate solid solution system, part IV: Tilting of the oxygen octahedra , 1989 .

[16]  Haller,et al.  Band-edge hydrostatic deformation potentials in III-V semiconductors. , 1987, Physical review letters.

[17]  A. Ievlev,et al.  Influence of adsorbed surface layer on domain growth in the field produced by conductive tip of scanning probe microscope in lithium niobate , 2011 .

[18]  M. Okano,et al.  Surface conduction on insulating BaTiO3 crystal suggesting an intrinsic surface electron layer. , 2001, Physical review letters.

[19]  William T. Lee,et al.  Trapping of oxygen vacancies in the twin walls of perovskite , 2010 .

[20]  Philippe Ghosez,et al.  Improper ferroelectricity in perovskite oxide artificial superlattices , 2008, Nature.

[21]  Sergei V. Kalinin,et al.  Conduction at domain walls in oxide multiferroics. , 2009, Nature materials.

[22]  J. H. Barrett Dielectric Constant in Perovskite Type Crystals , 1952 .

[23]  Patrycja Paruch,et al.  Conduction at Domain Walls in Insulating Pb(Zr0.2Ti0.8)O3 Thin Films , 2011, Advanced materials.

[24]  Anna N. Morozovska,et al.  Interfacial polarization and pyroelectricity in antiferrodistortive structures induced by a flexoelectric effect and rotostriction , 2012 .

[25]  Anna N. Morozovska,et al.  Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3 , 2011, Nature Physics.

[26]  H. Yi,et al.  Mechanism of the Switchable Photovoltaic Effect in Ferroelectric BiFeO3 , 2011, Advanced materials.

[27]  B. Houchmandzadeh,et al.  Order parameter coupling and chirality of domain walls , 1991 .

[28]  Yukio Watanabe,et al.  Investigation of Clean Ferroelectric Surface in Ultra High Vacuum (UHV): Surface Conduction and Scanning Probe Microscopy in UHV , 2009 .

[29]  A. Rappe,et al.  Reversible chemical switching of a ferroelectric film. , 2009, Physical Review Letters.

[30]  Sergei V. Kalinin,et al.  Domain wall conductivity in La-doped BiFeO3. , 2010, Physical review letters.

[31]  V. Fridkin,et al.  Photoferroelastic Phenomena in Sb507I Crystals , 1979 .

[32]  R. Mamin Emergence of heterophase structures near phase transitions in photoferroelectric materials , 1997 .

[33]  E. Salje,et al.  Surface structure of domain walls , 1998 .

[34]  V. Gopalan,et al.  Phenomenological thermodynamic potential for CaTiO3 single crystals , 2005, 1110.3484.

[35]  A. Tagantsev,et al.  Head-to-head and tail-to-tail 180 ° domain walls in an isolated ferroelectric , 2011, 1103.1571.

[36]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[37]  L. Eric Cross,et al.  Large flexoelectric polarization in ceramic lead magnesium niobate , 2001 .

[38]  A. Tagantsev,et al.  Finite-temperature flexoelectricity in ferroelectric thin films from first principles , 2012 .

[39]  Nicola A. Spaldin,et al.  The Renaissance of Magnetoelectric Multiferroics , 2005, Science.

[40]  D. Vanderbilt,et al.  First-principles theory of frozen-ion flexoelectricity , 2011, 1108.4997.

[41]  S. Thompson,et al.  Measurement of conduction band deformation potential constants using gate direct tunneling current in n-type metal oxide semiconductor field effect transistors under mechanical stress , 2006 .

[42]  C. Herring,et al.  Transport and Deformation-Potential Theory for Many-Valley Semiconductors with Anisotropic Scattering , 1956 .

[43]  Venkatraman Gopalan,et al.  Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors , 2011, 1103.2745.

[44]  C. Fennie,et al.  Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. , 2011, Physical review letters.

[45]  Sergei V. Kalinin,et al.  Tunable metallic conductance in ferroelectric nanodomains. , 2012, Nano letters.

[46]  Yukio Watanabe Properties of Clean Surface of BaTiO3 Single Crystals in UHV and Virtual Absence of Nonferroelectric Surface Layer , 2011 .

[47]  M. Alexe,et al.  A photoferroelectric material is more than the sum of its parts. , 2012, Nature Materials.

[48]  A. Tagantsev,et al.  Prediction of a low-temperature ferroelectric instability in antiphase domain boundaries of strontium titanate , 2001 .

[49]  D. Schryvers,et al.  Direct Observation of Ferrielectricity at Ferroelastic Domain Boundaries in CaTiO3 by Electron Microscopy , 2012, Advanced materials.

[50]  S. Thompson,et al.  Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors , 2007 .

[51]  I. Rychetský Deformation of crystal surfaces in ferroelastic materials caused by antiphase domain boundaries , 1997 .

[52]  Surface polar states and pyroelectricity in ferroelastics induced by flexo- roto field , 2012, 1201.5085.

[53]  T. Arias,et al.  Elastic effects of vacancies in strontium titanate: Short- and long-range strain fields, elastic dipole tensors, and chemical strain , 2008, 0811.2967.

[54]  Tahir Cagin,et al.  Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect , 2008 .

[55]  D. Bonnell,et al.  Direct in situ determination of the polarization dependence of physisorption on ferroelectric surfaces. , 2008, Nature materials.

[56]  S. Kalinin,et al.  Thermodynamics of electromechanically coupled mixed ionic-electronic conductors: Deformation potential, Vegard strains, and flexoelectric effect , 2011 .

[57]  L. Eric Cross,et al.  Flexoelectricity of barium titanate , 2006 .

[58]  Yasuhiko Ishikawa,et al.  Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si ( 100 ) , 2004 .

[59]  Venkatraman Gopalan,et al.  Rotation-reversal symmetries in crystals and handed structures. , 2010, Nature materials.

[60]  R. Blinc,et al.  Spontaneous flexoelectric/flexomagnetic effect in nanoferroics , 2009 .

[61]  J. Ziman Principles of the Theory of Solids , 1965 .

[62]  Sergei V. Kalinin,et al.  Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. , 2008, Nature Materials.

[63]  P Shafer,et al.  Above-bandgap voltages from ferroelectric photovoltaic devices. , 2010, Nature nanotechnology.

[64]  K. Dayal,et al.  Microstructure and stray electric fields at surface cracks in ferroelectrics , 2012, International Journal of Fracture.

[65]  C. Fennie,et al.  Band gap and edge engineering via ferroic distortion and anisotropic strain: the case of SrTiO(3). , 2011, Physical review letters.

[66]  A. Tagantsev,et al.  Enhanced electromechanical response of ferroelectrics due to charged domain walls , 2012, Nature Communications.

[67]  J. Scott,et al.  Strain-gradient-induced polarization in SrTiO3 single crystals. , 2007, Physical review letters.