Linear QR Architecture for a Single Chip Adaptive Beamformer

This paper presents the design of a novel single chip adaptive beamformer capable of performing 50 Gflops, (Giga-floating-point operations/second). The core processor is a QR array implemented on a fully efficient linear systolic architecture, derived using a mapping that allows individual processors for boundary and internal cell operations. In addition, the paper highlights a number of rapid design techniques that have been used to realise this system. These include an architecture synthesis tool for quickly developing the circuit architecture and the utilisation of a library of parameterisable silicon intellectual property (IP) cores, to rapidly develop detailed silicon designs.

[1]  K. J. Ray Liu,et al.  A unified square-root-free approach for QRD-based recursive-least-squares estimation , 1993, IEEE Trans. Signal Process..

[2]  Richard Lewis Walke High sample-rate Givens rotations for recursive least squares , 1997 .

[3]  R. Döhler,et al.  Squared Givens Rotation , 1991 .

[4]  Nicholas Kalouptsidis,et al.  Adaptive system identification and signal processing algorithms , 1993 .

[5]  Roger F. Woods,et al.  Architectural Synthesis of Digital Signal Processing Algorithms Using “IRIS” , 1997, J. VLSI Signal Process..

[6]  J. Cosgrove,et al.  Array processors , 1980, IEEE Acoustics, Speech, and Signal Processing Newsletter.

[7]  J. G. McWhirter,et al.  Systolic array for recursive least-squares minimisation , 1983 .

[8]  Axel Wenzler,et al.  New structures for complex multipliers and their noise analysis , 1995, Proceedings of ISCAS'95 - International Symposium on Circuits and Systems.

[9]  J. Kadlec,et al.  Normalised Givens rotations for recursive least squares processing , 1995, VLSI Signal Processing, VIII.

[10]  C. Rader,et al.  VLSI systolic arrays for adaptive nulling , 1996 .

[11]  T. Kailath,et al.  Fast, recursive-least-squares transversal filters for adaptive filtering , 1984 .

[12]  Xavier Mestre,et al.  Two-stage code reference beamformer in mobile communications , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[13]  L. Godara Application of antenna arrays to mobile communications. II. Beam-forming and direction-of-arrival considerations , 1997, Proc. IEEE.

[14]  Markku Renfors,et al.  The maximum sampling rate of digital filters under hardware speed constraints , 1981 .

[15]  G. Lightbody,et al.  Rapid design of a single chip adaptive beamformer , 1998, 1998 IEEE Workshop on Signal Processing Systems. SIPS 98. Design and Implementation (Cat. No.98TH8374).

[16]  C.M. Rader,et al.  MUSE-a systolic array for adaptive nulling with 64 degrees of freedom, using Givens transformations and wafer scale integration , 1990, [1992] Proceedings of the International Conference on Application Specific Array Processors.

[17]  J. G. McWhirter,et al.  Recursive Least-Squares Minimization Using A Systolic Array , 1983, Optics & Photonics.

[18]  S. Kung,et al.  VLSI Array processors , 1985, IEEE ASSP Magazine.

[19]  John Litva,et al.  Digital beamforming in wireless communications , 1996 .

[20]  W. Givens Computation of Plain Unitary Rotations Transforming a General Matrix to Triangular Form , 1958 .

[21]  J. G. McWhirter,et al.  Systolic Adaptive Beamforming , 1993 .

[22]  C. M. Rader,et al.  VLSI systolic arrays for adaptive nulling [radar] , 1996, IEEE Signal Process. Mag..

[23]  John V. McCanny,et al.  Hierarchical VHDL libraries for DSP ASIC design , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[24]  Robin Jones,et al.  Nonlinear dynamical systems analyzer , 1994, Optics & Photonics.

[25]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .