Spin–orbit torque switching in a single (Ga,Mn)(As,P) layer with perpendicular magnetic anisotropy

We report the observation of current induced spin–orbit torque (SOT) switching of magnetization in a (Ga,Mn)(As,P) film using perpendicular magnetic anisotropy. Complete SOT switching of magnetization was achieved with current densities as low as 7.4 × 105 A/cm2, which is one to two orders of magnitude smaller than that normally used for SOT switching in ferromagnet/heavy metal bilayer systems. The observed magnetization switching chirality during current scans is consistent with SOT arising from spin polarization caused by the Dresselhaus-type spin–orbit-induced (SOI) fields. The magnitudes of effective SOI fields corresponding to the SOT were obtained from shifts of switching angles in angular dependent Hall measurements observed for opposite current polarities. By measuring effective SOI fields for the [110] and the [110] current directions, we were then able to separate the values of the Dresselhaus-type (HeffD) and Rashba (HeffR) SOI fields. At a current density of 6.0 × 105 A/cm2, these values are HeffD=6.73Oe and HeffR=1.31Oe, respectively. The observed ratio of about 5:1 between Dresselhaus-type and Rashba SOI fields is similar to that observed in a GaMnAs film with an in-plane magnetic anisotropy.

[1]  I. Žutić,et al.  Cubic spin-orbit coupling and anomalous Josephson effect in planar junctions , 2021, 2101.08272.

[2]  J. Furdyna,et al.  Quantitative determination of spin–orbit-induced magnetic field in GaMnAs by field-scan planar Hall measurements , 2020, Scientific Reports.

[3]  Masaaki Tanaka,et al.  Suppression of the field-like torque for efficient magnetization switching in a spin–orbit ferromagnet , 2020, Nature Electronics.

[4]  M. Alidoust Critical supercurrent and φ0 state for probing a persistent spin helix , 2020, 2004.14586.

[5]  Kyung-Jin Lee,et al.  Spin-orbit Torque Switching of Perpendicular Magnetization in Ferromagnetic Trilayers , 2020, Scientific Reports.

[6]  J. Schliemann,et al.  Persistent spin textures and currents in wurtzite nanowire-based quantum structures , 2020, Physical Review B.

[7]  Byong‐Guk Park,et al.  Material and Thickness Investigation in Ferromagnet/Ta/CoFeB Trilayers for Enhancement of Spin–Orbit Torque and Field‐Free Switching , 2019, Advanced Electronic Materials.

[8]  Masaaki Tanaka,et al.  Efficient full spin–orbit torque switching in a single layer of a perpendicularly magnetized single-crystalline ferromagnet , 2019, Nature Communications.

[9]  D. Marinescu,et al.  Closed-Form Weak Localization Magnetoconductivity in Quantum Wells with Arbitrary Rashba and Dresselhaus Spin-Orbit Interactions. , 2018, Physical review letters.

[10]  R. Q. Zhang,et al.  Spin-orbit torque in a completely compensated synthetic antiferromagnet , 2018, Physical Review B.

[11]  M. Stiles,et al.  Synthetic antiferromagnetic spintronics , 2018, Nature Physics.

[12]  M. Stiles,et al.  Interface-Generated Spin Currents. , 2018, Physical review letters.

[13]  Andrew J. Berger,et al.  Determination of the spin Hall effect and the spin diffusion length of Pt from self-consistent fitting of damping enhancement and inverse spin-orbit torque measurements , 2017, Physical Review B.

[14]  J. Furdyna,et al.  Determination of current-induced spin-orbit effective magnetic field in GaMnAs ferromagnetic semiconductor , 2017 .

[15]  M. Stiles,et al.  Spin-orbit torques induced by interface-generated spin currents , 2017, 1708.06864.

[16]  X. Liu,et al.  Magnetic anisotropy of quaternary GaMnAsP ferromagnetic semiconductor , 2017 .

[17]  D. Awschalom,et al.  Stretchable persistent spin helices in GaAs quantum wells , 2017, 1702.05190.

[18]  C. You,et al.  Ferromagnetic layer thickness dependence of the Dzyaloshinskii-Moriya interaction and spin-orbit torques in Pt\Co\AlOx , 2016, 1609.02078.

[19]  J. G. Alzate,et al.  Competing effect of spin-orbit torque terms on perpendicular magnetization switching in structures with multiple inversion asymmetries , 2016, Scientific Reports.

[20]  Jianping Wang,et al.  Spin Hall switching of the magnetization in Ta/TbFeCo structures with bulk perpendicular anisotropy , 2015, 1501.02294.

[21]  L. Golub,et al.  Interplay of Rashba/Dresselhaus spin splittings probed by photogalvanic spectroscopy –A review , 2014 .

[22]  Shoji Ikeda,et al.  Magnetization reversal induced by in-plane current in Ta/CoFeB/MgO structures with perpendicular magnetic easy axis , 2014 .

[23]  J. Eom,et al.  Separation of Rashba and Dresselhaus spin-orbit interactions using crystal direction dependent transport measurements , 2013 .

[24]  A. Rushforth,et al.  Anisotropic Current-Controlled Magnetization Reversal in the Ferromagnetic Semiconductor (Ga,Mn)As , 2013, 1303.1907.

[25]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.

[26]  Weisheng Zhao,et al.  Compact Modeling of Perpendicular-Anisotropy CoFeB/MgO Magnetic Tunnel Junctions , 2012, IEEE Transactions on Electron Devices.

[27]  S. Bandiera,et al.  Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection , 2011, Nature.

[28]  T. Jungwirth,et al.  Detection of stacking faults breaking the [110]/[110] symmetry in ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P) , 2010, 1012.4690.

[29]  H. Ohno,et al.  Current induced effective magnetic field and magnetization reversal in uniaxial anisotropy (Ga,Mn)As , 2010 .

[30]  Bernard Rodmacq,et al.  Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. , 2010, Nature materials.

[31]  L. Largeau,et al.  Adjustable anisotropy in ferromagnetic (Ga,Mn) (As,P) layered alloys , 2010 .

[32]  T. Jungwirth,et al.  Magnetocrystalline anisotropies in (Ga,Mn)As: Systematic theoretical study and comparison with experiment , 2009, 0904.0993.

[33]  X. Liu,et al.  Magnetotransport properties of GaMnAs based trilayer structures with different thicknesses of InGaAs spacer layer , 2009 .

[34]  Jacek K. Furdyna,et al.  Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field , 2008, 0812.3160.

[35]  A. Rushforth,et al.  Molecular Beam Epitaxy grown (Ga,Mn)(As,P) with perpendicular to plane magnetic easy axis , 2008, 0807.1469.

[36]  L. Largeau,et al.  Strain control of the magnetic anisotropy in (Ga,Mn) (As,P) ferromagnetic semiconductor layers , 2008, 0807.0748.

[37]  J. Beeman,et al.  Tuning of ferromagnetism through anion substitution in Ga–Mn–pnictide ferromagnetic semiconductors , 2007, 0707.4490.

[38]  O. Vafek,et al.  Piezo-magnetoelectric effects in p -doped semiconductors , 2004, cond-mat/0408476.

[39]  Shou-Cheng Zhang,et al.  Spin splitting and spin current in strained bulk semiconductors , 2004, cond-mat/0408442.

[40]  D. D. Awschalom,et al.  Observation of the Spin Hall Effect in Semiconductors , 2004, Science.

[41]  A. Gossard,et al.  Current-induced spin polarization in strained semiconductors. , 2004, Physical review letters.

[42]  D. D. Awschalom,et al.  Coherent spin manipulation without magnetic fields in strained semiconductors , 2004, Nature.

[43]  Xiaofeng Liu,et al.  Ferromagnetic resonance in Ga 1 − x Mn x As : Effects of magnetic anisotropy , 2003 .

[44]  H. Ohno,et al.  Epitaxy of (Ga, Mn)As, a new diluted magnetic semiconductor based on GaAs , 1997 .

[45]  G. Dresselhaus Spin-Orbit Coupling Effects in Zinc Blende Structures , 1955 .