Real-Time Object Tracking Via Online Discriminative Feature Selection

Most tracking-by-detection algorithms train discriminative classifiers to separate target objects from their surrounding background. In this setting, noisy samples are likely to be included when they are not properly sampled, thereby causing visual drift. The multiple instance learning (MIL) paradigm has been recently applied to alleviate this problem. However, important prior information of instance labels and the most correct positive instance (i.e., the tracking result in the current frame) can be exploited using a novel formulation much simpler than an MIL approach. In this paper, we show that integrating such prior information into a supervised learning algorithm can handle visual drift more effectively and efficiently than the existing MIL tracker. We present an online discriminative feature selection algorithm that optimizes the objective function in the steepest ascent direction with respect to the positive samples while in the steepest descent direction with respect to the negative ones. Therefore, the trained classifier directly couples its score with the importance of samples, leading to a more robust and efficient tracker. Numerous experimental evaluations with state-of-the-art algorithms on challenging sequences demonstrate the merits of the proposed algorithm.

[1]  Ming Yang,et al.  Tracking non-stationary appearances and dynamic feature selection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[2]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[3]  Chiou-Shann Fuh,et al.  Probabilistic tracking with adaptive feature selection , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[4]  Wen Gao,et al.  Online Selection of Discriminative Features Using Bayes Error Rate for Visual Tracking , 2006, PCM.

[5]  Yanxi Liu,et al.  Online selection of discriminative tracking features , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Paul A. Viola,et al.  Multiple Instance Boosting for Object Detection , 2005, NIPS.

[7]  Horst Bischof,et al.  MIForests: Multiple-Instance Learning with Randomized Trees , 2010, ECCV.

[8]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[9]  David J. Fleet,et al.  Robust Online Appearance Models for Visual Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[11]  Horst Bischof,et al.  On-line semi-supervised multiple-instance boosting , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  C. Regazzoni,et al.  Online Discriminative Feature Selection in a Bayesian Framework using Shape and Appearance , 2008 .

[13]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[15]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[16]  Huchuan Lu,et al.  Online multiple support instance tracking , 2011, Face and Gesture 2011.

[17]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[18]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[19]  Dimitris Achlioptas,et al.  Database-friendly random projections: Johnson-Lindenstrauss with binary coins , 2003, J. Comput. Syst. Sci..

[20]  Michael I. Jordan,et al.  On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes , 2001, NIPS.

[21]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  Guoliang Fan,et al.  Target Tracking with Online Feature Selection in FLIR Imagery , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Yixin Chen,et al.  MILES: Multiple-Instance Learning via Embedded Instance Selection , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Ting Yu,et al.  Gradient Feature Selection for Online Boosting , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[25]  Junseok Kwon,et al.  Tracking by Sampling Trackers , 2011, 2011 International Conference on Computer Vision.

[26]  Shai Avidan,et al.  Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[28]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[29]  Shai Avidan,et al.  Support vector tracking , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[31]  Rajat Raina,et al.  Self-taught learning: transfer learning from unlabeled data , 2007, ICML '07.

[32]  Kaihua Zhang,et al.  Real-time visual tracking via online weighted multiple instance learning , 2013, Pattern Recognit..

[33]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[34]  Wen Gao,et al.  Online selecting discriminative tracking features using particle filter , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[35]  J. Wade Davis,et al.  Statistical Pattern Recognition , 2003, Technometrics.

[36]  Peter L. Bartlett,et al.  Functional Gradient Techniques for Combining Hypotheses , 2000 .

[37]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[38]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[39]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.