Advances in Detection and Error Correction for Coherent Optical Communications: Regular, Irregular, and Spatially Coupled LDPC Code Designs

Forward error correction (FEC) in optical communications has been first demonstrated in 1988 [1]. Since then, coding technology has evolved significantly. This pertains not only to the codes but also to encoder and decoder architectures. Modern high-speed optical communication systems require high-performing FEC engines that support throughputs of 100 GBit/s or multiples thereof, that have low power consumption, that realize net coding gains (NCGs) close to the theoretical limits at a target bit error rate (BER) of below 10−15, and that are preferably adapted to the peculiarities of the optical channel. Forward error correction coding is based on deterministically adding redundant bits to a source information bit sequence. After transmission over a noisy channel, a decoding system tries to exploit the redundant information for fully recovering the source information. Several methods for generating the redundant bit sequence from the source information bits are known. Transmission systems with 100 GBit/s and 400 GBit/s today typically use one of two coding schemes to generate the redundant information: Block-Turbo Codes (BTCs) or Low-Density Parity-Check (LDPC) codes. In coherent systems, so-called soft information is usually ready available and can be used in high performing systems within a soft-decision decoder architecture. Soft-decision information means that no binary 0/1 decision is made before entering the forward error correction decoder. Instead, the (quantized) samples are used together with their statistics to get improved estimates of the original bit sequence. This chapter will focus on soft-decision decoding of LDPC codes and the evolving spatially coupled LDPC codes.

[1]  S. ten Brink,et al.  Iterative demapping and decoding for multilevel modulation , 1998, IEEE GLOBECOM 1998 (Cat. NO. 98CH36250).

[2]  Amir H. Banihashemi,et al.  On implementation of min-sum algorithm and its modifications for decoding low-density Parity-check (LDPC) codes , 2005, IEEE Transactions on Communications.

[3]  W. Weber,et al.  Differential Encoding for Multiple Amplitude and Phase Shift Keying Systems , 1978, IEEE Trans. Commun..

[4]  Giuseppe Caire,et al.  Bit-Interleaved Coded Modulation , 2008, Found. Trends Commun. Inf. Theory.

[5]  Sheng Chen,et al.  Design of Low-Density Parity-Check Codes , 2011, IEEE Vehicular Technology Magazine.

[6]  J. Thorpe Low-Density Parity-Check (LDPC) Codes Constructed from Protographs , 2003 .

[7]  Shu Lin,et al.  Channel Codes: Classical and Modern , 2009 .

[8]  D.E. Hocevar,et al.  A reduced complexity decoder architecture via layered decoding of LDPC codes , 2004, IEEE Workshop onSignal Processing Systems, 2004. SIPS 2004..

[9]  Kenya Sugihara,et al.  A spatially-coupled type LDPC Code with an NCG of 12 dB for optical transmission beyond 100 Gb/s , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[10]  Laurent Schmalen,et al.  A Low-Complexity LDPC Coding Scheme for Channels With Phase Slips , 2015, Journal of Lightwave Technology.

[11]  C. R. S. Fludger,et al.  Cycle slip tolerant hybrid turbo differential decoding , 2014, 2014 The European Conference on Optical Communication (ECOC).

[12]  Kamil Sh. Zigangirov,et al.  Time-varying periodic convolutional codes with low-density parity-check matrix , 1999, IEEE Trans. Inf. Theory.

[13]  Gianluigi Ferrari,et al.  Serial concatenation of LDPC codes and differential modulations , 2005, IEEE Journal on Selected Areas in Communications.

[14]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[15]  Lara Dolecek,et al.  Predicting error floors of structured LDPC codes: deterministic bounds and estimates , 2009, IEEE Journal on Selected Areas in Communications.

[16]  Xiaodong Li,et al.  Bit-interleaved coded modulation with iterative decoding , 1997, IEEE Communications Letters.

[17]  Frank R. Kschischang,et al.  Multi-Edge-Type Low-Density Parity-Check Codes for Bandwidth-Efficient Modulation , 2013, IEEE Transactions on Communications.

[18]  Troels Pedersen,et al.  Analysis and Design of Binary Message Passing Decoders , 2012, IEEE Transactions on Communications.

[19]  T. Kupfer,et al.  Turbo differential decoding failure for a coherent phase slip channel , 2012, 2012 38th European Conference and Exhibition on Optical Communications.

[20]  Takeshi Hoshida,et al.  A study on the effectiveness of turbo equalization with FEC for nonlinearity compensation in coherent WDM transmissions , 2013, 2013 18th OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching (OECC/PS).

[21]  H. Yoshida,et al.  Proposal for frame structure of optical channel transport unit employing LDPC codes for 100 Gb/s FEC , 2009, 2009 Conference on Optical Fiber Communication - incudes post deadline papers.

[22]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[23]  Laurent Schmalen,et al.  On the convergence speed of spatially coupled LDPC ensembles , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[24]  Timo Pfau,et al.  Carrier recovery algorithms and real-time DSP implementation for coherent receivers , 2014, OFC 2014.

[25]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[26]  Thomas J. Richardson,et al.  Error Floors of LDPC Codes , 2003 .

[27]  Peter A. Hoeher,et al.  "Turbo DPSK": iterative differential PSK demodulation and channel decoding , 1999, IEEE Trans. Commun..

[28]  Stephan ten Brink,et al.  Design of low-density parity-check codes for modulation and detection , 2004, IEEE Transactions on Communications.

[29]  Paul H. Siegel,et al.  Windowed Decoding of Spatially Coupled Codes , 2011, IEEE Transactions on Information Theory.

[30]  Laurent Schmalen Energy efficient FEC for optical transmission systems , 2014, OFC 2014.

[31]  Yifei Zhang,et al.  Design of LDPC Codes: A Survey and New Results , 2017 .

[32]  D. Costello,et al.  Approaching capacity with asymptotically regular LDPC codes , 2009, 2009 Information Theory and Applications Workshop.

[33]  Michael Lentmaier,et al.  AWGN channel analysis of terminated LDPC convolutional codes , 2011, 2011 Information Theory and Applications Workshop.

[34]  Laurent Schmalen,et al.  Status and Recent Advances on Forward Error Correction Technologies for Lightwave Systems , 2014, Journal of Lightwave Technology.

[35]  Frank Schreckenbach,et al.  Iterative Decoding of Bit-Interleaved Coded Modulation , 2007 .

[36]  Gilles Zémor,et al.  On the minimum distance of structured LDPC codes with two variable nodes of degree 2 per parity-check equation , 2006, 2006 IEEE International Symposium on Information Theory.

[37]  Joachim Hagenauer,et al.  Iterative decoding of binary block and convolutional codes , 1996, IEEE Trans. Inf. Theory.

[38]  Henry D. Pfister,et al.  Iterative hard-decision decoding of braided BCH codes for high-speed optical communication , 2013, 2013 IEEE Global Communications Conference (GLOBECOM).

[39]  Wayne D. Grover,et al.  Forward error correction in dispersion-limited lightwave systems , 1988 .

[40]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[41]  Erik Agrell,et al.  Improving soft FEC performance for higher-order modulations via optimized bit channel mappings. , 2014, Optics express.

[42]  Sandro Bellini,et al.  LDPC Design for Block Differential Modulation in Optical Communications , 2015, Journal of Lightwave Technology.

[43]  Paul H. Siegel,et al.  Windowed Decoding of Protograph-Based LDPC Convolutional Codes Over Erasure Channels , 2010, IEEE Transactions on Information Theory.

[44]  Rüdiger L. Urbanke,et al.  Threshold Saturation via Spatial Coupling: Why Convolutional LDPC Ensembles Perform So Well over the BEC , 2010, IEEE Transactions on Information Theory.

[45]  Toshiaki Koike-Akino,et al.  Cycle slip-mitigating turbo demodulation in LDPC-coded coherent optical communications , 2014, OFC 2014.

[46]  Gottfried Lechner,et al.  Optimization of LDPC Codes for Receiver Frontends , 2006, 2006 IEEE International Symposium on Information Theory.

[47]  Daniel J. Costello,et al.  Channel coding: The road to channel capacity , 2006, Proceedings of the IEEE.

[48]  R. Storn,et al.  Design of efficient erasure codes with differential evolution , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[49]  Lara Dolecek,et al.  Spatially coupled sparse codes on graphs: theory and practice , 2013, IEEE Communications Magazine.

[50]  R. Noe,et al.  Hardware-Efficient Coherent Digital Receiver Concept With Feedforward Carrier Recovery for $M$ -QAM Constellations , 2009, Journal of Lightwave Technology.

[51]  G. David Forney Trellis shaping , 1992, IEEE Trans. Inf. Theory.

[52]  Leszek Szczecinski,et al.  On BICM-ID with Multiple Interleavers , 2010, IEEE Communications Letters.

[53]  Lajos Hanzo,et al.  Turbo Coding, Turbo Equalisation and Space-Time Coding for Transmission over Fading Channels , 2002 .

[54]  William E. Ryan,et al.  Coding for Optical Channels , 2010 .

[55]  G. Bauch,et al.  Soft-decision LDPC turbo decoding for DQPSK modulation in coherent optical receivers , 2011, 2011 37th European Conference and Exhibition on Optical Communication.

[56]  Laurent Schmalen,et al.  Spatially-coupled LDPC protograph codes for universal phase slip-tolerant differential decoding , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[57]  Stephan ten Brink,et al.  Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.

[58]  Frank R. Kschischang,et al.  Staircase Codes: FEC for 100 Gb/s OTN , 2012, Journal of Lightwave Technology.

[59]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[60]  Simon Litsyn,et al.  Analysis of low-density parity-check codes based on EXIT functions , 2006, IEEE Transactions on Communications.

[61]  Gerhard Fettweis,et al.  Efficient message passing scheduling for terminated LDPC convolutional codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[62]  Laurent Schmalen Low-complexity phase slip tolerant LDPC-based FEC scheme , 2014, 2014 The European Conference on Optical Communication (ECOC).

[63]  Laurent Schmalen,et al.  Experimental Analysis of Transmission and Soft Decoding of Optimized 4D Constellations , 2013 .

[64]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[65]  Marie-Laure Boucheret,et al.  Asymptotic analysis and design of iterative receivers for non linear ISI channels , 2014, 2014 8th International Symposium on Turbo Codes and Iterative Information Processing (ISTC).

[66]  C. R. S. Fludger,et al.  Cycle-slips in 100G DP-QPSK transmission systems , 2012, OFC/NFOEC.

[67]  A. M. Abdullah,et al.  Wireless lan medium access control (mac) and physical layer (phy) specifications , 1997 .

[68]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[69]  T. Moon Error Correction Coding: Mathematical Methods and Algorithms , 2005 .

[70]  Rüdiger L. Urbanke,et al.  Spatially coupled ensembles universally achieve capacity under belief propagation , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[71]  Gerhard Bauch,et al.  Conditions on Degree Distributions to Compensate Differential Penalty by LDPC Turbo Decoding , 2013, 2013 IEEE 78th Vehicular Technology Conference (VTC Fall).

[72]  Patrick Robertson,et al.  A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[73]  Marco Chiani,et al.  Protograph LDPC Codes Design Based on EXIT Analysis , 2007, IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference.

[74]  Rüdiger L. Urbanke,et al.  Wave-Like Solutions of General One-Dimensional Spatially Coupled Systems , 2012, ArXiv.

[75]  Frank R. Kschischang,et al.  A Pragmatic Coded Modulation Scheme for High-Spectral-Efficiency Fiber-Optic Communications , 2012, Journal of Lightwave Technology.

[76]  Gerhard Bauch,et al.  Design of LDPC Codes for Hybrid 10 Gbps/100 Gbps Optical Systems with Optional Differential Modulation , 2013 .

[77]  Christoph F. Mecklenbräuker,et al.  On estimating the signal to noise ratio from BPSK signals , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[78]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[79]  Daniel A. Spielman,et al.  Practical loss-resilient codes , 1997, STOC '97.

[80]  Gerhard Fettweis,et al.  Asymptotically good LDPC convolutional codes with AWGN channel thresholds close to the Shannon limit , 2010, 2010 6th International Symposium on Turbo Codes & Iterative Information Processing.

[81]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[82]  R. Koetter,et al.  Turbo equalization , 2004, IEEE Signal Processing Magazine.

[83]  Laurent Schmalen,et al.  Combining Spatially Coupled LDPC Codes with Modulation and Detection , 2013 .

[84]  Mario Rafael Hueda,et al.  Non-Concatenated FEC Codes for Ultra-High Speed Optical Transport Networks , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.

[85]  Gunnar Jacobsen,et al.  Dimensioning BCH Codes for Coherent DQPSK Systems With Laser Phase Noise and Cycle Slips , 2014, Journal of Lightwave Technology.

[86]  Joseph M. Kahn,et al.  Coded Modulation for Fiber-Optic Networks: Toward better tradeoff between signal processing complexity and optical transparent reach , 2014, IEEE Signal Processing Magazine.

[87]  Jinghu Chen,et al.  Near optimum universal belief propagation based decoding of low-density parity check codes , 2002, IEEE Trans. Commun..