Nega-Hadamard Transform, Bent and Negabent Functions

In this paper we start developing a detailed theory of nega-Hadamard transforms. Consequently, we derive several results on ne-gabentness of concatenations, and partially-symmetric functions. We also obtain a characterization of bent-negabent functions in a subclass of Maiorana-McFarland set. As a by-product of our results we obtain simple proofs of several existing facts.

[1]  Claude Carlet,et al.  Two New Classes of Bent Functions , 1994, EUROCRYPT.

[2]  Matthew G. Parker,et al.  On Boolean Functions Which Are Bent and Negabent , 2007, SSC.

[3]  Hans Dobbertin,et al.  Construction of Bent Functions and Balanced Boolean Functions with High Nonlinearity , 1994, FSE.

[4]  J. Dillon Elementary Hadamard Difference Sets , 1974 .

[5]  Petr Savický On the Bent Boolean Functions That are Symmetric , 1994, Eur. J. Comb..

[6]  Claude Carlet,et al.  Boolean Functions for Cryptography and Error-Correcting Codes , 2010, Boolean Models and Methods.

[7]  David J. Goodman,et al.  Personal Communications , 1994, Mobile Communications.

[8]  T. Cusick,et al.  Bent Boolean functions , 2009 .

[9]  Matthew G. Parker,et al.  One and Two-Variable Interlace Polynomials: A Spectral Interpretation , 2005, WCC.

[10]  Claude Carlet,et al.  Vectorial Boolean Functions for Cryptography , 2006 .

[11]  Matthew G. Parker,et al.  Negabent Functions in the Maiorana-McFarland Class , 2008, SETA.

[12]  Palash Sarkar,et al.  Cross-Correlation Analysis of Cryptographically Useful Boolean Functions and S-Boxes , 2001, Theory of Computing Systems.

[13]  Timo Neumann,et al.  BENT FUNCTIONS , 2006 .

[14]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[15]  Solomon W. Golomb,et al.  Sequences and Their Applications - SETA 2008, 5th International Conference, Lexington, KY, USA, September 14-18, 2008, Proceedings , 2008, SETA.

[16]  Sumanta Sarkar On the Symmetric Negabent Boolean Functions , 2009, INDOCRYPT.

[17]  Tor Helleseth,et al.  Advances in Cryptology — EUROCRYPT ’93 , 2001, Lecture Notes in Computer Science.

[18]  Solomon W. Golomb,et al.  Sequences, Subsequences, and Consequences, International Workshop, SSC 2007, Los Angeles, CA, USA, May 31 - June 2, 2007, Revised Invited Papers , 2007, SSC.

[19]  Pantelimon Stanica,et al.  Cryptographic Boolean Functions and Applications , 2009 .

[20]  Matthew G. Parker,et al.  Generalized Bent Criteria for Boolean Functions (I) , 2005, IEEE Transactions on Information Theory.

[21]  Gerhard Goos,et al.  Fast Software Encryption , 2001, Lecture Notes in Computer Science.

[22]  T. Aaron Gulliver,et al.  Aperiodic propagation criteria for Boolean functions , 2006, Inf. Comput..

[23]  Bimal Roy,et al.  Progress in Cryptology - INDOCRYPT 2009, 10th International Conference on Cryptology in India, New Delhi, India, December 13-16, 2009. Proceedings , 2009, INDOCRYPT.

[24]  Hans Dobbertin,et al.  Bent functions embedded into the recursive framework of $${\mathbb{Z}}$$ -bent functions , 2008, Des. Codes Cryptogr..

[25]  Ying Zhao,et al.  On bent functions with some symmetric properties , 2006, Discret. Appl. Math..

[26]  H. Niederreiter,et al.  Introduction to finite fields and their applications: Factorization of Polynomials , 1994 .