Gyrokinetic particle simulation of microturbulence for general magnetic geometry and experimental profiles

Developments in gyrokinetic particle simulation enable the gyrokinetic toroidal code (GTC) to simulate turbulent transport in tokamaks with realistic equilibrium profiles and plasma geometry, which is a critical step in the code–experiment validation process. These new developments include numerical equilibrium representation using B-splines, a new Poisson solver based on finite difference using field-aligned mesh and magnetic flux coordinates, a new zonal flow solver for general geometry, and improvements on the conventional four-point gyroaverage with nonuniform background marker loading. The gyrokinetic Poisson equation is solved in the perpendicular plane instead of the poloidal plane. Exploiting these new features, GTC is able to simulate a typical DIII-D discharge with experimental magnetic geometry and profiles. The simulated turbulent heat diffusivity and its radial profile show good agreement with other gyrokinetic codes. The newly developed nonuniform loading method provides a modified radial transport profile to that of the conventional uniform loading method.

[1]  L. Lao,et al.  Three-dimensional toroidal equilibria and stability by a variational spectral method , 1985 .

[2]  Ihor Holod,et al.  Iop Publishing Plasma Physics and Controlled Fusion Global Gyrokinetic Particle Simulations with Kinetic Electrons , 2022 .

[3]  W. W. Lee,et al.  Gyrokinetic approach in particle simulation , 1981 .

[4]  W. A. Peebles,et al.  L-mode validation studies of gyrokinetic turbulence simulations via multiscale and multifield turbulence measurements on the DIII-D tokamak , 2011 .

[5]  I. Holod,et al.  Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. I. Internal kink mode , 2014 .

[6]  D. McCune,et al.  New techniques for calculating heat and particle source rates due to neutral beam injection in axisymmetric tokamaks , 1981 .

[7]  Ihor Holod,et al.  Radial localization of toroidicity-induced Alfvén eigenmodes. , 2013, Physical review letters.

[8]  Global particle-in-cell simulations of microturbulence with kinetic electrons , 2005 .

[9]  D. Shumaker,et al.  Parameter dependences of ion thermal transport due to toroidal ITG turbulence , 2001 .

[10]  Zhihong Lin,et al.  Trapped electron damping of geodesic acoustic mode , 2010 .

[11]  R. Waltz,et al.  Anomalous transport scaling in the DIII-D tokamak matched by supercomputer simulation. , 2003, Physical review letters.

[12]  T. Hahm,et al.  Turbulent Transport Reduction by Zonal Flows: Massively Parallel Simulations , 1998 .

[13]  S. Parker,et al.  A fully nonlinear characteristic method for gyrokinetic simulation , 1993 .

[14]  L. L. Lao,et al.  High spatial resolution equilibrium reconstruction , 2011 .

[15]  Xin Wang,et al.  Gyrokinetic particle simulation of the beta-induced Alfven eigen mode , 2010 .

[16]  T. Fujita,et al.  Chapter 2: Plasma confinement and transport , 2007 .

[17]  Jeff M. Candy,et al.  Coupled ion temperature gradient and trapped electron mode to electron temperature gradient mode gyrokinetic simulations , 2007 .

[18]  J. C. Whitson,et al.  Steepest‐descent moment method for three‐dimensional magnetohydrodynamic equilibria , 1983 .

[19]  J. Bao,et al.  Particle simulation of lower hybrid wave propagation in fusion plasmas , 2014, 1409.7436.

[20]  I. Holod,et al.  Microturbulence in DIII-D tokamak pedestal. I. Electrostatic instabilities , 2014 .

[21]  Z. Lin,et al.  Size scaling of turbulent transport in magnetically confined plasmas. , 2002, Physical review letters.

[22]  T. L. Rhodes,et al.  Advances in validating gyrokinetic turbulence models against L- and H-mode plasmas a) , 2011 .

[23]  T. S. Hahm,et al.  Nonlinear gyrokinetic equations for tokamak microturbulence , 1988 .

[24]  Ihor Holod,et al.  Electromagnetic formulation of global gyrokinetic particle simulation in toroidal geometry , 2009 .

[25]  Lin,et al.  Method for solving the gyrokinetic Poisson equation in general geometry. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  Jeff M. Candy,et al.  Implementation and application of two synthetic diagnostics for validating simulations of core tokamak turbulence , 2009 .

[27]  M. S. Chance,et al.  Hamiltonian guiding center drift orbit calculation for plasmas of arbitrary cross section , 1984 .

[28]  W. Horton Drift waves and transport , 1999 .

[29]  W. Tang,et al.  Study of trapped electron instabilities driven by magnetic curvature drifts , 1977 .

[30]  Yong Xiao,et al.  Convective motion in collisionless trapped electron mode turbulence , 2011 .

[31]  Zhihong Lin,et al.  Verification and validation of linear gyrokinetic simulation of Alfvén eigenmodes in the DIII-D tokamak , 2012 .

[32]  W. Dorland,et al.  Effects of finite poloidal gyroradius, shaping, and collisions on the zonal flow residual , 2007 .

[33]  Ihor Holod,et al.  Linear properties of reversed shear Alfvén eigenmodes in the DIII-D tokamak , 2012 .