Mechanism of a No-Metal-Added Heterocycloisomerization of Alkynylcyclopropylhydrazones: Synthesis of Cycloheptane-Fused Aminopyrroles Facilitated by Copper Salts at Trace Loadings.

A mechanistic study of a new heterocycloisomerization reaction that forms annulated aminopyrroles is presented. Density functional theory calculations and kinetic studies suggest the reaction is catalyzed by trace copper salts and that a Z- to E-hydrazone isomerization occurs through an enehydrazine intermediate before the rate-determining cyclization of the hydrazone onto the alkyne group. The aminopyrrole products are obtained in 36-93% isolated yield depending on the nature of the alkynyl substituent. A new automated sampling technique was developed to obtain robust mechanistic data.

[1]  Jason E. Hein,et al.  Real-time HPLC-MS reaction progress monitoring using an automated analytical platform , 2017 .

[2]  R. Grubbs,et al.  Potassium tert-Butoxide-Catalyzed Dehydrogenative C-H Silylation of Heteroaromatics: A Combined Experimental and Computational Mechanistic Study. , 2017, Journal of the American Chemical Society.

[3]  Shibdas Banerjee,et al.  Ionic and Neutral Mechanisms for C-H Bond Silylation of Aromatic Heterocycles Catalyzed by Potassium tert-Butoxide. , 2017, Journal of the American Chemical Society.

[4]  J. Hein,et al.  The More, The Better: Simultaneous In Situ Reaction Monitoring Provides Rapid Mechanistic and Kinetic Insight , 2017, Topics in Catalysis.

[5]  Jason E. Hein,et al.  Automated reaction progress monitoring of heterogeneous reactions: crystallization-induced stereoselectivity in amine-catalyzed aldol reactions , 2017 .

[6]  Anna L. Dunn,et al.  Progress toward reaction monitoring at variable temperatures: a new stopped‐flow NMR probe design , 2017, Magnetic resonance in chemistry : MRC.

[7]  J. S. McIndoe,et al.  Simultaneous Orthogonal Methods for the Real-Time Analysis of Catalytic Reactions , 2016 .

[8]  M. Fey,et al.  NMR flow tube for online NMR reaction monitoring. , 2014, Analytical chemistry.

[9]  Alison R. H. Narayan,et al.  Protic-solvent-mediated cycloisomerization of quinoline and isoquinoline propargylic alcohols: syntheses of (±)-3-demethoxyerythratidinone and (±)-cocculidine. , 2013, Angewandte Chemie.

[10]  A. S. Dudnik,et al.  Transition metal-mediated synthesis of monocyclic aromatic heterocycles. , 2013, Chemical reviews.

[11]  V. Gevorgyan,et al.  Palladium-catalyzed carbonylative cyclization/arylation cascade for 2-aroylindolizine synthesis. , 2012, Organic letters.

[12]  Sidney M. Wilkerson-Hill,et al.  Tungsten-catalyzed heterocycloisomerization approach to 4,5-dihydro-benzo[b]furans and -indoles. , 2012, Journal of the American Chemical Society.

[13]  C. Bolm,et al.  Trace metal impurities in catalysis. , 2012, Chemical Society reviews.

[14]  J. M. Merritt,et al.  ReactNMR and ReactIR as reaction monitoring and mechanistic elucidation tools: the NCS mediated cascade reaction of α-thioamides to α-thio-β-chloroacrylamides. , 2011, The Journal of organic chemistry.

[15]  W. C. Lineberger,et al.  The synergy between qualitative theory, quantitative calculations, and direct experiments in understanding, calculating, and measuring the energy differences between the lowest singlet and triplet states of organic diradicals. , 2011, Physical chemistry chemical physics : PCCP.

[16]  Benhur Godoi,et al.  Synthesis of heterocycles via electrophilic cyclization of alkynes containing heteroatom. , 2011, Chemical reviews.

[17]  V. Gevorgyan,et al.  Palladium-catalyzed intramolecular carbopalladation/cyclization cascade: access to polycyclic N-fused heterocycles. , 2010, Organic letters.

[18]  R. Sarpong,et al.  Remarkable facilitation of hetero-cycloisomerizations with water and other polar protic solvents: metal-free synthesis of indolizines. , 2010, Green chemistry : an international journal and green chemistry resource : GC.

[19]  J. Neudörfl,et al.  Stereospecificity of the Au(I)-catalyzed reaction of 1-alkynyl-bicyclo[4.1.0]-heptan-2-ones with nucleophiles , 2010 .

[20]  J. Hynes,et al.  Theoretical aspects of tunneling proton transfer reactions in a polar environment , 2010 .

[21]  C. Bolm,et al.  Copper-catalyzed cross-couplings with part-per-million catalyst loadings. , 2009, Angewandte Chemie.

[22]  S. Buchwald,et al.  On the role of metal contaminants in catalyses with FeCl3. , 2009, Angewandte Chemie.

[23]  C. Cramer,et al.  Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. , 2009, The journal of physical chemistry. B.

[24]  S. Kirsch Construction of Heterocyclesby the Strategic Use of Alkyne π-Activation in CatalyzedCascade Reactions , 2008 .

[25]  Chao-Jun Li,et al.  Green chemistry for chemical synthesis , 2008, Proceedings of the National Academy of Sciences.

[26]  P. Toullec,et al.  Cycloisomerization of 1,n-enynes: challenging metal-catalyzed rearrangements and mechanistic insights. , 2008, Angewandte Chemie.

[27]  V. Gevorgyan,et al.  Low temperature organocopper-mediated two-component cross coupling/cycloisomerization approach toward N-fused heterocycles. , 2008, Organic letters.

[28]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[29]  P. Meunier,et al.  Ultra‐Low Catalyst Loading as a Concept in Economical and Sustainable Modern Chemistry: The Contribution of Ferrocenylpolyphosphane Ligands , 2007 .

[30]  V. Gevorgyan,et al.  Base- and ligand-free room-temperature synthesis of N-fused heteroaromatic compounds via the transition metal-catalyzed cycloisomerization protocol. , 2007, Organic letters.

[31]  Stephen J. Lee,et al.  Electrophilic activation of alkenes by platinum(II): so much more than a slow version of palladium(II). , 2007, Angewandte Chemie.

[32]  R. Sarpong,et al.  Pt-catalyzed cyclization/1,2-migration for the synthesis of indolizines, pyrrolones, and indolizinones. , 2007, Organic letters.

[33]  Junliang Zhang,et al.  Gold(I)-catalyzed reaction of 1-(1-alkynyl)-cyclopropyl ketones with nucleophiles: a modular entry to highly substituted furans. , 2006, Angewandte Chemie.

[34]  V. Gevorgyan,et al.  Gold-catalyzed 1,2-migration of silicon, tin, and germanium en route to C-2 substituted fused pyrrole-containing heterocycles. , 2006, Journal of the American Chemical Society.

[35]  R. Sarpong,et al.  Pt-catalyzed pentannulations from in situ generated metallo-carbenoids utilizing propargylic esters. , 2005, Journal of the American Chemical Society.

[36]  N. Leadbeater,et al.  A reassessment of the transition-metal free suzuki-type coupling methodology. , 2005, The Journal of organic chemistry.

[37]  P. Daniel,et al.  Hydrogenation of unsaturated rubbers using diimide as a reducing agent , 2005 .

[38]  V. Farina High‐Turnover Palladium Catalysts in Cross‐Coupling and Heck Chemistry: A Critical Overview , 2004 .

[39]  N. Leadbeater,et al.  Transition-metal-free Suzuki-type coupling reactions: scope and limitations of the methodology. , 2003, The Journal of organic chemistry.

[40]  N. Leadbeater,et al.  Transition-metal-free Suzuki-type coupling reactions. , 2003, Angewandte Chemie.

[41]  P. Phinyocheep,et al.  Diimide hydrogenation of isoprene-styrene diblock copolymers , 2003 .

[42]  G. C. Fu,et al.  Palladium-catalyzed coupling reactions of aryl chlorides. , 2002, Angewandte Chemie.

[43]  L. Overman,et al.  Stereocontrolled synthesis of triazacyclopenta[cd]pentalenes by intramolecular 1,3-dipolar cycloaddition reactions of azomethine imines. , 2002, The Journal of organic chemistry.

[44]  N. Leadbeater,et al.  Ligand-free palladium catalysis of the Suzuki reaction in water using microwave heating. , 2002, Organic letters.

[45]  J. Hartwig,et al.  Air Stable, Sterically Hindered Ferrocenyl Dialkylphosphines for Palladium-Catalyzed C−C, C−N, and C−O Bond-Forming Cross-Couplings , 2002 .

[46]  Paul T Anastas,et al.  Origins, current status, and future challenges of green chemistry. , 2002, Accounts of chemical research.

[47]  B. Trost,et al.  On inventing reactions for atom economy. , 2002, Accounts of chemical research.

[48]  M. Malacria,et al.  The behavior of 1,n-enynes in the presence of transition metals. , 2002, Chemical reviews.

[49]  M. Beller,et al.  Ein neues hocheffizientes Katalysatorsystem für die Kupplung von nichtaktivierten und desaktivierten Arylchloriden mit Arylboronsäuren , 2000 .

[50]  G. C. Fu,et al.  Versatile Catalysts for the Suzuki Cross-Coupling of Arylboronic Acids with Aryl and Vinyl Halides and Triflates under Mild Conditions , 2000 .

[51]  P. Holler,et al.  Hydrogenation of low-molar-mass, OH-telechelic polybutadienes. I. Methods based on diimide , 1999 .

[52]  S. Buchwald,et al.  Highly Active Palladium Catalysts for Suzuki Coupling Reactions , 1999 .

[53]  Buchwald,et al.  A Highly Active Catalyst for the Room-Temperature Amination and Suzuki Coupling of Aryl Chlorides. , 1999, Angewandte Chemie.

[54]  John F. Hartwig,et al.  A Fluorescence-Based Assay for High-Throughput Screening of Coupling Reactions. Application to Heck Chemistry , 1999 .

[55]  L. Overman,et al.  Synthesis of 2-Azatricyclo[5.2.1.0(4,10)]decanes and 2,5-Diazatricyclo[5.2.1.0(4,10)]decanes by Intramolecular Azomethine Ylide Cycloadditions. , 1996, The Journal of organic chemistry.

[56]  M. Beller,et al.  Palladacycles as Structurally Defined Catalysts for the Heck Olefination of Chloro- and Bromoarenes†‡ , 1995 .

[57]  Coskun Sahin,et al.  Mechanism of the Diastereoselective, Boron Trifluoride-Catalyzed Cyclization of Olefinic Tosylhydrazones to Stereolabeled, Bridgehead-Substituted Azoalkanes , 1995 .

[58]  H. Bernhard Schlegel,et al.  Improved algorithms for reaction path following: Higher‐order implicit algorithms , 1991 .

[59]  M. Saunders,et al.  Theoretical calculation of equilibrium isotope effects using ab initio force constants: application to NMR isotope perturbation studies , 1989 .

[60]  H. Bernhard Schlegel,et al.  An improved algorithm for reaction path following , 1989 .

[61]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[62]  K. Fukui The path of chemical reactions - the IRC approach , 1981 .

[63]  R. Jones,et al.  Pyrrole studies. 22. [4.pi. + 2.pi.] Cycloaddition reactions with vinylpyrroles , 1980 .

[64]  A. Packard,et al.  Intra- and intermolecular cyclization of olefinic tosylhydrazones under acidic conditions. A facile synthesis of bicyclic azoalkanes , 1980 .

[65]  A. F. Hegarty,et al.  Kinetics of syn-anti conversions of 2,4-dinitro-phenylhydrazones , 1968 .

[66]  F. Vane,et al.  Structural Studies by Nuclear Magnetic Resonance. VIII. Ring-Substituted Phenylhydrazones, Semicarbazones, and Thiosemicarbazones , 1964 .

[67]  Gerasimos J. Karabatsos,et al.  Structural Studies by Nuclear Magnetic Resonance. V. Phenylhydrazones , 1963 .

[68]  F. Vane,et al.  Structural Studies by Nuclear Magnetic Resonance. II. Aldehyde 2,4-Dinitrophenylhydrazones , 1963 .

[69]  J. Bigeleisen,et al.  Calculation of Equilibrium Constants for Isotopic Exchange Reactions , 1947 .

[70]  H. Doucet,et al.  Palladium Catalysed Cross-Coupling of Aryl Chlorides with Arylboronic Acids in the Presence of a New Tetraphosphine Ligand , 2001 .

[71]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[72]  R. Hosmane,et al.  Synthesis of indoles and carbazoles: Diels–Alder reactions of nitrovinyl-pyrroles and -benzindoles , 1973 .

[73]  F. Vane,et al.  Structural studies by nuclear magnetic resonance. VII. The stereospecificity of coupling between protons separated by six bonds. , 1964 .