Review—Solid Electrolytes in Rechargeable Electrochemical Cells

[1]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[2]  Sossina M. Haile,et al.  Solid acids as fuel cell electrolytes , 2001, Nature.

[3]  J. Kafalas,et al.  High Na+-ion conductivity in Na5YSi4O12☆ , 1978 .

[4]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[5]  Fuminori Mizuno,et al.  High lithium ion conducting glass-ceramics in the system Li2S–P2S5 , 2006 .

[6]  Arumugam Manthiram,et al.  A dual-electrolyte rechargeable Li-air battery with phosphate buffer catholyte , 2012 .

[7]  Venkataraman Thangadurai,et al.  Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M = Nb, Ta) , 2003 .

[8]  Joachim Maier,et al.  Second Phase Effects on the Conductivity of Non‐Aqueous Salt Solutions: “Soggy Sand Electrolytes” , 2004 .

[9]  J. Goodenough Phase transitions in high-Tcsuperconductive oxides , 1990 .

[10]  A. Pradel,et al.  Ionic conductive glasses , 1989 .

[11]  J. Phair,et al.  Review of proton conductors for hydrogen separation , 2006 .

[12]  John B Goodenough,et al.  Prussian blue: a new framework of electrode materials for sodium batteries. , 2012, Chemical communications.

[13]  H. Iwahara,et al.  High oxide ion conduction in sintered Bi2O3 containing SrO, CaO or La2O3 , 1972 .

[14]  J. Goodenough,et al.  A Composite Gel–Polymer/Glass–Fiber Electrolyte for Sodium‐Ion Batteries , 2015 .

[15]  E. Wachsman,et al.  A higher conductivity Bi2O3-based electrolyte , 2002 .

[16]  J. Goodenough,et al.  Superior Perovskite Oxide‐Ion Conductor; Strontium‐ and Magnesium‐Doped LaGaO3: II, ac Impedance Spectroscopy , 2005 .

[17]  John B. Goodenough,et al.  CoMn2O4 Spinel Nanoparticles Grown on Graphene as Bifunctional Catalyst for Lithium-Air Batteries , 2011 .

[18]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[19]  Tatsumi Ishihara,et al.  Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor , 1994 .

[20]  A. Hayashi,et al.  Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries , 2013 .

[21]  Christopher J. Ellison,et al.  Trapping lithium polysulfides of a Li–S battery by forming lithium bonds in a polymer matrix , 2015 .

[22]  K. Tadanaga,et al.  New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses , 2005 .

[23]  Alexander Kuhn,et al.  A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. , 2014, Physical chemistry chemical physics : PCCP.

[24]  I. Ogino,et al.  Temperature and humidity ranges of some hydrates of high-proton-conductive dodecamolybdophosphoric acid and dodecatungstophosphoric acid crystals under an atmosphere of hydrogen or either oxygen or air , 1981 .

[25]  J. Goodenough,et al.  A Superior Oxide-Ion Electrolyte. , 1995 .

[26]  P. Bruce,et al.  The A‐C Conductivity of Polycrystalline LISICON, Li2 + 2x Zn1 − x GeO4, and a Model for Intergranular Constriction Resistances , 1983 .

[27]  Christopher J. Ellison,et al.  New battery strategies with a polymer/Al2O3 separator , 2014 .

[28]  P. Lehnen,et al.  Phase Transitions , 2021, Computational Statistical Physics.

[29]  John B. Goodenough,et al.  Mapping of Transition Metal Redox Energies in Phosphates with NASICON Structure by Lithium Intercalation , 1997 .

[30]  S. Haile,et al.  High-Performance Solid Acid Fuel Cells Through Humidity Stabilization , 2004, Science.