Towards flexible solid-state supercapacitors for smart and wearable electronics.

Flexible solid-state supercapacitors (FSSCs) are frontrunners in energy storage device technology and have attracted extensive attention owing to recent significant breakthroughs in modern wearable electronics. In this study, we review the state-of-the-art advancements in FSSCs to provide new insights on mechanisms, emerging electrode materials, flexible gel electrolytes and novel cell designs. The review begins with a brief introduction on the fundamental understanding of charge storage mechanisms based on the structural properties of electrode materials. The next sections briefly summarise the latest progress in flexible electrodes (i.e., freestanding and substrate-supported, including textile, paper, metal foil/wire and polymer-based substrates) and flexible gel electrolytes (i.e., aqueous, organic, ionic liquids and redox-active gels). Subsequently, a comprehensive summary of FSSC cell designs introduces some emerging electrode materials, including MXenes, metal nitrides, metal-organic frameworks (MOFs), polyoxometalates (POMs) and black phosphorus. Some potential practical applications, such as the development of piezoelectric, photo-, shape-memory, self-healing, electrochromic and integrated sensor-supercapacitors are also discussed. The final section highlights current challenges and future perspectives on research in this thriving field.

[1]  Yu Huang,et al.  Functionalized Graphene Hydrogel‐Based High‐Performance Supercapacitors , 2013, Advanced materials.

[2]  Shuang Yuan,et al.  Advances and challenges for flexible energy storage and conversion devices and systems , 2014 .

[3]  Boyang Liu,et al.  New energy storage option: toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors. , 2013, ACS applied materials & interfaces.

[4]  Tom Nilges,et al.  Access and in situ growth of phosphorene-precursor black phosphorus , 2014 .

[5]  Chun–Chen Yang,et al.  All solid-state electric double-layer capacitors based on alkaline polyvinyl alcohol polymer electrolytes , 2005 .

[6]  Y. Gogotsi,et al.  Flexible MXene–graphene electrodes with high volumetric capacitance for integrated co-cathode energy conversion/storage devices , 2017 .

[7]  Husam N. Alshareef,et al.  Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering , 2015 .

[8]  Hui‐Ming Cheng,et al.  Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors , 2017 .

[9]  Peng Zhang,et al.  A MnOOH/nitrogen-doped graphene hybrid nanowires sandwich film for flexible all-solid-state supercapacitors , 2015 .

[10]  T. Shi,et al.  High-performance all-solid-state flexible supercapacitors based on two-step activated carbon cloth , 2014 .

[11]  W. Mai,et al.  Nickel oxide nanoflake-based bifunctional glass electrodes with superior cyclic stability for energy storage and electrochromic applications , 2015 .

[12]  Yuguang Ma,et al.  High performance, flexible, poly(3,4-ethylenedioxythiophene) supercapacitors achieved by doping redox mediators in organogel electrolytes , 2016 .

[13]  Bin Chen,et al.  Facile template-free synthesis of vertically aligned polypyrrole nanosheets on nickel foams for flexible all-solid-state asymmetric supercapacitors. , 2016, Nanoscale.

[14]  Huisheng Peng,et al.  Flexible and Weaveable Capacitor Wire Based on a Carbon Nanocomposite Fiber , 2013, Advanced materials.

[15]  H. Pang,et al.  Hydrothermal Synthesis of Nickel Phosphate Nanorods for High‐Performance Flexible Asymmetric All‐Solid‐State Supercapacitors , 2015 .

[16]  Teng Zhai,et al.  Manganese dioxide nanorod arrays on carbon fabric for flexible solid-state supercapacitors , 2013 .

[17]  J. Tu,et al.  Transition Metal Carbides and Nitrides in Energy Storage and Conversion , 2016, Advanced science.

[18]  Minghong Wu,et al.  Assembling nitrogen and oxygen co-doped graphene quantum dots onto hierarchical carbon networks for all-solid-state flexible supercapacitors , 2017 .

[19]  Lele Peng,et al.  Nanostructured conductive polymers for advanced energy storage. , 2015, Chemical Society reviews.

[20]  Bruno Scrosati,et al.  Impedance Spectroscopy Study of PEO‐Based Nanocomposite Polymer Electrolytes , 2000 .

[21]  Yu-Lun Chueh,et al.  Fiber-based all-solid-state flexible supercapacitors for self-powered systems. , 2012, ACS nano.

[22]  Sudip Malik,et al.  Reduced Graphene Oxide/Fe3O4/Polyaniline Nanostructures as Electrode Materials for an All-Solid-State Hybrid Supercapacitor , 2017 .

[23]  Goangseup Zi,et al.  Biaxially stretchable, integrated array of high performance microsupercapacitors. , 2014, ACS nano.

[24]  C.C. Yang,et al.  Preparation of alkaline PVA-based polymer electrolytes for Ni–MH and Zn–air batteries , 2003 .

[25]  Zikang Tang,et al.  Flexible, sandwich-like CNTs/NiCo2O4 hybrid paper electrodes for all-solid state supercapacitors , 2017 .

[26]  P. Taberna,et al.  On the molecular origin of supercapacitance in nanoporous carbon electrodes. , 2012, Nature materials.

[27]  Daeil Kim,et al.  High performance flexible double-sided micro-supercapacitors with an organic gel electrolyte containing a redox-active additive. , 2016, Nanoscale.

[28]  Lele Peng,et al.  Two dimensional nanomaterials for flexible supercapacitors. , 2014, Chemical Society reviews.

[29]  J. Kerres,et al.  Blended and Cross‐Linked Ionomer Membranes for Application in Membrane Fuel Cells , 2005 .

[30]  Lan Jiang,et al.  High-performance flexible solid-state supercapacitors based on MnO2-decorated nanocarbon electrodes , 2013 .

[31]  T. Ma,et al.  Work function of In2O3 film as determined from internal photoemission , 1980 .

[32]  Xiang Cai,et al.  Large-scale fabrication of pseudocapacitive glass windows that combine electrochromism and energy storage. , 2014, Angewandte Chemie.

[33]  Fei Xiao,et al.  Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes. , 2012, ACS applied materials & interfaces.

[34]  Jeong Sook Ha,et al.  Fabrication of high performance flexible micro-supercapacitor arrays with hybrid electrodes of MWNT/V2O5 nanowires integrated with a SnO2 nanowire UV sensor. , 2014, Nanoscale.

[35]  Jaephil Cho,et al.  Cover Picture: Interfacial Architectures Derived by Lithium Difluoro(bisoxalato) Phosphate for Lithium‐Rich Cathodes with Superior Cycling Stability and Rate Capability (ChemElectroChem 1/2017) , 2017 .

[36]  Rui-Tao Wen,et al.  Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films , 2015, Nature materials.

[37]  You Chen,et al.  Porous honeycomb structures formed from interconnected MnO2 sheets on CNT-coated substrates for flexible all-solid-state supercapacitors , 2016, Scientific Reports.

[38]  Yongyao Xia,et al.  Electrochemical capacitors: mechanism, materials, systems, characterization and applications. , 2016, Chemical Society reviews.

[39]  Yafei Zhang,et al.  High-performance flexible all-solid-state supercapacitors based on densely-packed graphene/polypyrrole nanoparticle papers , 2016 .

[40]  Sumanta Kumar Karan,et al.  Fast charging self-powered wearable and flexible asymmetric supercapacitor power cell with fish swim bladder as an efficient natural bio-piezoelectric separator , 2017 .

[41]  Jessica de Wild,et al.  Optoelectronic and spectroscopic characterization of vapour-transport grown Cu2ZnSnS4 single crystals , 2017 .

[42]  P. Hiralal,et al.  Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes. , 2014, ACS applied materials & interfaces.

[43]  D. Dubal,et al.  Functionalization of Polypyrrole Nanopipes with Redox-Active Polyoxometalates for High Energy Density Supercapacitors. , 2017, ChemSusChem.

[44]  Zhenxing Zhang,et al.  Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. , 2013, ACS nano.

[45]  Weishan Li,et al.  Synthesis of size-tunable anatase TiO₂ nanospindles and their assembly into anatase@titanium oxynitride/titanium nitride-graphene nanocomposites for rechargeable lithium ion batteries with high cycling performance. , 2010, ACS nano.

[46]  J. Botas,et al.  Co8-MOF-5 as electrode for supercapacitors , 2012 .

[47]  Wei Li,et al.  Electrospinning preparation of a H4SiW12O40/polycaprolactam composite nanofibrous membrane and its greatly enhanced photocatalytic activity and mechanism , 2016 .

[48]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[49]  K. Krishnamoorthy,et al.  Hierarchical copper selenide nanoneedles grown on copper foil as a binder free electrode for supercapacitors , 2016 .

[50]  Bruno Scrosati,et al.  Solid-state, polymer-based, redox capacitors , 1996 .

[51]  C. Lokhande,et al.  Flexible all-solid-state MnO2 thin films based symmetric supercapacitors , 2015 .

[52]  Bo Chen,et al.  Reduced Graphene Oxide‐Wrapped MoO3 Composites Prepared by Using Metal–Organic Frameworks as Precursor for All‐Solid‐State Flexible Supercapacitors , 2015, Advanced materials.

[53]  Nae-Lih Wu,et al.  Manganese oxide electrochemical capacitor with potassium poly(acrylate) hydrogel electrolyte , 2008 .

[54]  V. Yadavalli,et al.  Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography. , 2001, Langmuir : the ACS journal of surfaces and colloids.

[55]  Xueqin Zhang,et al.  MoO 2 @Cu@C Composites Prepared by Using Polyoxometalates@Metal-Organic Frameworks as Template for All-Solid-State Flexible Supercapacitor , 2016 .

[56]  Nansheng Xu,et al.  Flexible solid-state supercapacitors based on a conducting polymer hydrogel with enhanced electrochemical performance , 2014 .

[57]  L. Dai,et al.  Flexible supercapacitors based on carbon nanomaterials , 2014 .

[58]  A. Mahmood,et al.  Metal‐Organic Framework‐Based Nanomaterials for Electrocatalysis , 2016 .

[59]  Dan Feng,et al.  Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices. , 2011, Journal of the American Chemical Society.

[60]  B. Logan Exoelectrogenic bacteria that power microbial fuel cells , 2009, Nature Reviews Microbiology.

[61]  Jun Zhou,et al.  Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. , 2012, ACS nano.

[62]  Hua Zhang,et al.  Controllable Synthesis of Atomically Thin Type‐II Weyl Semimetal WTe2 Nanosheets: An Advanced Electrode Material for All‐Solid‐State Flexible Supercapacitors , 2017, Advanced materials.

[63]  Y. Bando,et al.  Cable‐Type Supercapacitors of Three‐Dimensional Cotton Thread Based Multi‐Grade Nanostructures for Wearable Energy Storage , 2013, Advanced materials.

[64]  C. Lokhande,et al.  Highly energetic flexible all-solid-state asymmetric supercapacitor with Fe2O3 and CuO thin films , 2016 .

[65]  K. Müllen,et al.  Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. , 2014, Journal of the American Chemical Society.

[66]  Paul M. DiCarmine,et al.  Donor–Acceptor Polymers for Electrochemical Supercapacitors: Synthesis, Testing, and Theory , 2014 .

[67]  D. Bhat,et al.  LiClO4-doped plasticized chitosan and poly(ethylene glycol) blend as biodegradable polymer electrolyte for supercapacitors , 2013, Ionics.

[68]  Jun Wang,et al.  Wearable Solid-State Supercapacitors Operating at High Working Voltage with a Flexible Nanocomposite Electrode. , 2016, ACS applied materials & interfaces.

[69]  Amrita Jain,et al.  Experimental studies on high-performance supercapacitor based on nanogel polymer electrolyte with treated activated charcoal , 2013, Ionics.

[70]  K. Lian,et al.  Polyoxometalate modified pine cone biochar carbon for supercapacitor electrodes , 2017 .

[71]  Jing Zhang,et al.  Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes , 2013 .

[72]  Wentao Hu,et al.  Controlled Incorporation of Ni(OH)2 Nanoplates Into Flowerlike MoS2 Nanosheets for Flexible All‐Solid‐State Supercapacitors , 2014 .

[73]  Y. Sung,et al.  Enhanced ionic conductivity in PEO-LiClO4 hybrid electrolytes by structural modification , 2006 .

[74]  Teng Zhai,et al.  Solid‐State Supercapacitor Based on Activated Carbon Cloths Exhibits Excellent Rate Capability , 2014, Advanced materials.

[75]  N. Koratkar,et al.  Solid‐State Hybrid Fibrous Supercapacitors Produced by Dead‐End Tube Membrane Ultrafiltration , 2017 .

[76]  Yichun Liu,et al.  Flexible solid-state supercapacitors based on freestanding nitrogen-doped porous carbon nanofibers derived from electrospun polyacrylonitrile@polyaniline nanofibers , 2016 .

[77]  G. Lu,et al.  Novel Nafion composite membranes with mesoporous silica nanospheres as inorganic fillers , 2008 .

[78]  Yi Xie,et al.  A zwitterionic gel electrolyte for efficient solid-state supercapacitors , 2016, Nature Communications.

[79]  Sreekumar Kurungot,et al.  High-Performance Flexible Solid-State Supercapacitor with an Extended Nanoregime Interface through in Situ Polymer Electrolyte Generation. , 2016, ACS applied materials & interfaces.

[80]  Yao Yao,et al.  Compact graphene/MoS2 composite films for highly flexible and stretchable all-solid-state supercapacitors , 2017 .

[81]  Chenguo Hu,et al.  Ultra-fine CuO Nanoparticles Embedded in Three-dimensional Graphene Network Nano-structure for High-performance Flexible Supercapacitors , 2017 .

[82]  Hui Peng,et al.  Polyaniline-based carbon nanospheres and redox mediator doped robust gel films lead to high performance foldable solid-state supercapacitors , 2017 .

[83]  Shayan Seyedin,et al.  High-Performance Flexible All-Solid-State Supercapacitor from Large Free-Standing Graphene-PEDOT/PSS Films , 2015, Scientific Reports.

[84]  Yury Gogotsi,et al.  2D metal carbides and nitrides (MXenes) for energy storage , 2017 .

[85]  Zhong Lin Wang,et al.  An ultrathin paper-based self-powered system for portable electronics and wireless human-machine interaction , 2017 .

[86]  Xinliang Feng,et al.  Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. , 2015, Angewandte Chemie.

[87]  Xinni Zhang,et al.  Flexible Nitrogen Doped SiC Nanoarray for Ultrafast Capacitive Energy Storage. , 2015, ACS nano.

[88]  Nae-Eung Lee,et al.  Recent Progress on Stretchable Electronic Devices with Intrinsically Stretchable Components , 2017, Advanced materials.

[89]  Ning Zhang,et al.  Layer-by-layer β-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance , 2013 .

[90]  R. Ruoff,et al.  Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage , 2015, Science.

[91]  A. Yu,et al.  Hair-based flexible knittable supercapacitor with wide operating voltage and ultra-high rate capability , 2017 .

[92]  Xiluan Wang,et al.  Flexible graphene devices related to energy conversion and storage , 2015 .

[93]  C. Zhi,et al.  A shape memory supercapacitor and its application in smart energy storage textiles , 2016 .

[94]  Bjørn Petter Jelle,et al.  Performance of an electrochromic window based on polyaniline, prussian blue and tungsten oxide , 1999 .

[95]  Bruno Scrosati,et al.  Composite gel polymer electrolytes containing core-shell structured SiO2(Li+) particles for lithium-ion polymer batteries , 2012 .

[96]  C. Zhi,et al.  From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles. , 2015, ACS nano.

[97]  Feng Luan,et al.  High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. , 2013, Nanoscale.

[98]  Meilin Liu,et al.  A Low‐Cost, Self‐Standing NiCo2O4@CNT/CNT Multilayer Electrode for Flexible Asymmetric Solid‐State Supercapacitors , 2017 .

[99]  Y. Gogotsi,et al.  Capacitive energy storage in nanostructured carbon-electrolyte systems. , 2013, Accounts of chemical research.

[100]  Minshen Zhu,et al.  Recent progress of fiber-shaped asymmetric supercapacitors , 2017 .

[101]  Haiyan Wang,et al.  MnO2 nanograsses on porous carbon cloth for flexible solid-state asymmetric supercapacitors with high energy density , 2017 .

[102]  Wei Lv,et al.  Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage , 2015 .

[103]  G. Guan,et al.  Self-healable electrically conducting wires for wearable microelectronics. , 2014, Angewandte Chemie.

[104]  Min Wei,et al.  Hierarchical Conducting Polymer@Clay Core-Shell Arrays for Flexible All-Solid-State Supercapacitor Devices. , 2015, Small.

[105]  C. Westgate,et al.  All-solid-state supercapacitors with poly(3,4-ethylenedioxythiophene)-coated carbon fiber paper electrodes and ionic liquid gel polymer electrolyte , 2014 .

[106]  Prashant N. Kumta,et al.  Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors , 2006 .

[107]  Bingjie Zhu,et al.  High-performance all-solid-state yarn supercapacitors based on porous graphene ribbons , 2015 .

[108]  Yibing Xie,et al.  Preparation and electrochemical capacitance of graphene/titanium nitride nanotube array , 2014 .

[109]  R. Divya,et al.  All-solid-state asymmetric supercapacitors based on cobalt hexacyanoferrate-derived CoS and activated carbon , 2017 .

[110]  B. Geng,et al.  Superior performance asymmetric supercapacitors based on ZnCo2O4@MnO2 core–shell electrode , 2015 .

[111]  Zhao‐Qing Liu,et al.  MnO2/reduced graphene oxide composite as high-performance electrode for flexible supercapacitors , 2013 .

[112]  Jianshan Ye,et al.  A facile approach to fabricate flexible all-solid-state supercapacitors based on MnFe2O4/graphene hybrids , 2014 .

[113]  Y. Gogotsi,et al.  True Performance Metrics in Electrochemical Energy Storage , 2011, Science.

[114]  H. Alshareef,et al.  All conducting polymer electrodes for asymmetric solid-state supercapacitors , 2015 .

[115]  Daeil Kim,et al.  All-solid-state flexible micro-supercapacitor arrays with patterned graphene/MWNT electrodes , 2014 .

[116]  M. Yilmaz,et al.  Solid-state supercapacitor cell based on 3D nanostructured MnO2/CNT microelectrode array on graphite and H3PO4/PVA electrolyte , 2017 .

[117]  Zheye Zhang,et al.  Well-Ordered Oxygen-Deficient CoMoO4 and Fe2O3 Nanoplate Arrays on 3D Graphene Foam: Toward Flexible Asymmetric Supercapacitors with Enhanced Capacitive Properties. , 2017, ACS applied materials & interfaces.

[118]  C. Lokhande,et al.  Ionically conducting PVA-LiClO4 gel electrolyte for high performance flexible solid state supercapacitors. , 2015, Journal of colloid and interface science.

[119]  B. Dunn,et al.  Designing Pseudocapacitance for Nb2O5/Carbide-Derived Carbon Electrodes and Hybrid Devices. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[120]  Deepak P. Dubal,et al.  Large scale flexible solid state symmetric supercapacitor through inexpensive solution processed V2O5 complex surface architecture , 2017 .

[121]  W. Mai,et al.  Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole , 2015 .

[122]  B. Sankapal,et al.  Two dimensional cryptomelane like growth of MoSe2 over MWCNTs: Symmetric all-solid-state supercapacitor , 2017 .

[123]  Elizabeth Gibney,et al.  The inside story on wearable electronics , 2015, Nature.

[124]  Qiang Zhang,et al.  A General Electrode Design Strategy for Flexible Fiber Micro‐Pseudocapacitors Combining Ultrahigh Energy and Power Delivery , 2017, Advanced science.

[125]  Ching-ping Wong,et al.  Facile and scalable fabrication of three-dimensional Cu(OH)2 nanoporous nanorods for solid-state supercapacitors , 2015 .

[126]  Dimos Poulikakos,et al.  Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes , 2014, Nanotechnology.

[127]  Yue Wu,et al.  Carbon-based flexible micro-supercapacitor fabrication via mask-free ambient micro-plasma-jet etching , 2017 .

[128]  N. Munichandraiah,et al.  Electrochemical Studies of Polyaniline in a Gel Polymer Electrolyte High Energy and High Power Characteristics of a Solid-State Redox Supercapacitor , 2002 .

[129]  Changsheng Liu,et al.  Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors. , 2012, Small.

[130]  Yichuan Ling,et al.  Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. , 2011, Nano letters.

[131]  Keryn Lian,et al.  Effect of SiO2 on Silicotungstic Acid-H3PO4-poly(vinyl alcohol) Electrolyte for Electrochemical Supercapacitors , 2013 .

[132]  P. Li,et al.  Facile Fabrication of Three-Dimensional Graphene and Metal–Organic Framework Composites and Their Derivatives for Flexible All-Solid-State Supercapacitors , 2017 .

[133]  Haitao Huang,et al.  Design of Hierarchical NiCo@NiCo Layered Double Hydroxide Core–Shell Structured Nanotube Array for High‐Performance Flexible All‐Solid‐State Battery‐Type Supercapacitors , 2017 .

[134]  Federico Bella,et al.  A flexible and portable powerpack by solid-state supercapacitor and dye-sensitized solar cell integration , 2017 .

[135]  Xuemei Sun,et al.  Electrochromic Fiber‐Shaped Supercapacitors , 2014, Advanced materials.

[136]  N. Brandon,et al.  Tough ionogel-in-mask hybrid gel electrolytes in supercapacitors with durable pressure and thermal tolerances , 2017 .

[137]  P. Xiong,et al.  Recent advances in graphene-based hybrid nanostructures for electrochemical energy storage. , 2016, Nanoscale horizons.

[138]  Mingfei Shao,et al.  Carbon modified transition metal oxides/hydroxides nanoarrays toward high-performance flexible all-solid-state supercapacitors , 2017 .

[139]  Y. Li,et al.  Assembly of flexible CoMoO4@NiMoO4·xH2O and Fe2O3 electrodes for solid-state asymmetric supercapacitors , 2017, Scientific Reports.

[140]  K. Lian,et al.  A comparative study of tetraethylammonium hydroxide polymer electrolytes for solid electrochemical capacitors , 2016 .

[141]  Yang Jie,et al.  From triboelectric nanogenerator to self-powered smart floor: A minimalist design , 2017 .

[142]  Huisheng Peng,et al.  High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets , 2014, Scientific Reports.

[143]  Yu Wang,et al.  Advances and prospects of fiber supercapacitors , 2015 .

[144]  X. Zhao,et al.  Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes , 2011 .

[145]  Huanlei Wang,et al.  Self‐Recovering Tough Gel Electrolyte with Adjustable Supercapacitor Performance , 2014, Advanced materials.

[146]  Jiuke Mu,et al.  A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath-core structural triboelectric fibers , 2017 .

[147]  D. Dubal,et al.  Hybrid energy storage: the merging of battery and supercapacitor chemistries. , 2015, Chemical Society reviews.

[148]  Chenguo Hu,et al.  High performance solid state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres , 2015 .

[149]  F. Fan,et al.  Flexible Nanogenerators for Energy Harvesting and Self‐Powered Electronics , 2016, Advanced materials.

[150]  Yi Cui,et al.  Energy and environmental nanotechnology in conductive paper and textiles , 2012 .

[151]  Keryn Lian,et al.  Advanced proton conducting membrane for ultra-high rate solid flexible electrochemical capacitors , 2012 .

[152]  Wei Huang,et al.  Design of Amorphous Manganese Oxide@Multiwalled Carbon Nanotube Fiber for Robust Solid-State Supercapacitor. , 2017, ACS nano.

[153]  R. Sun,et al.  Flexible Asymmetrical Solid-State Supercapacitors Based on Laboratory Filter Paper. , 2016, ACS nano.

[154]  F. Martín,et al.  Polyvinylpyrrolidone–LiClO4 solid polymer electrolyte and its application in transparent thin film supercapacitors , 2013 .

[155]  Xiaogang Li,et al.  Assembly of graphene aerogels into the 3D biomass-derived carbon frameworks on conductive substrates for flexible supercapacitors , 2017 .

[156]  Jian Zhu,et al.  Wearable High‐Performance Supercapacitors Based on Silver‐Sputtered Textiles with FeCo2S4–NiCo2S4 Composite Nanotube‐Built Multitripod Architectures as Advanced Flexible Electrodes , 2017 .

[157]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[158]  Jinping Liu,et al.  Carbon nanotube network film directly grown on carbon cloth for high-performance solid-state flexible supercapacitors , 2014, Nanotechnology.

[159]  Yunqi Liu,et al.  Freestanding graphene paper supported three-dimensional porous graphene-polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. , 2014, ACS applied materials & interfaces.

[160]  Hua Zhang,et al.  Cobalt oxide and N-doped carbon nanosheets derived from a single two-dimensional metal-organic framework precursor and their application in flexible asymmetric supercapacitors. , 2017, Nanoscale horizons.

[161]  Lei Jiang,et al.  A strong and highly flexible aramid nanofibers/PEDOT:PSS film for all-solid-state supercapacitors with superior cycling stability , 2016 .

[162]  Huisheng Peng,et al.  Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. , 2014, Angewandte Chemie.

[163]  Tengfei Zhang,et al.  A High‐Performance Graphene Oxide‐Doped Ion Gel as Gel Polymer Electrolyte for All‐Solid‐State Supercapacitor Applications , 2013 .

[164]  Sang-Hoon Park,et al.  Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance , 2017, Advanced materials.

[165]  X. Lou,et al.  One-dimensional metal oxide-carbon hybrid nanostructures for electrochemical energy storage. , 2016, Nanoscale horizons.

[166]  Jun Wang,et al.  High-performance all-solid-state asymmetrical supercapacitors based on petal-like NiCo2S4/Polyaniline nanosheets , 2017 .

[167]  Xiaochen Dong,et al.  Binary metal oxide: advanced energy storage materials in supercapacitors , 2015 .

[168]  T. Shi,et al.  Scalable Fabrication of Flexible Solid‐State Asymmetric Supercapacitors with a Wide Operation Voltage utilizing Printable Carbon Film Electrodes , 2017 .

[169]  Bo-Yeong Kim,et al.  All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. , 2012, ACS nano.

[170]  J. Reiter,et al.  Ternary polymer electrolytes with 1-methylimidazole based ionic liquids and aprotic solvents , 2006 .

[171]  Bamidele Akinwolemiwa,et al.  Redox Electrolytes in Supercapacitors , 2015 .

[172]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[173]  J. Xu,et al.  Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth. , 2013, ACS nano.

[174]  Sheng Yang,et al.  Ultraflexible In‐Plane Micro‐Supercapacitors by Direct Printing of Solution‐Processable Electrochemically Exfoliated Graphene , 2016, Advanced materials.

[175]  Wei Zhang,et al.  Solid-state, flexible, high strength paper-based supercapacitors , 2013 .

[176]  Ling-Bin Kong,et al.  Watchband‐Like Supercapacitors with Body Temperature Inducible Shape Memory Ability , 2016 .

[177]  Jian Chang,et al.  Coaxial fiber supercapacitor using all-carbon material electrodes. , 2013, ACS nano.

[178]  Jihuai Wu,et al.  Improving the energy density of quasi-solid-state electric double-layer capacitors by introducing redox additives into gel polymer electrolytes , 2014 .

[179]  M. Dincǎ,et al.  Cation exchange at the secondary building units of metal-organic frameworks. , 2014, Chemical Society reviews.

[180]  Bin Liu,et al.  NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors , 2013 .

[181]  Yiqing Sun,et al.  Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering , 2012, Scientific Reports.

[182]  Y. Gogotsi,et al.  Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitors , 2014 .

[183]  T. Shi,et al.  Rational design of nickel cobalt sulfide/oxide core-shell nanocolumn arrays for high-performance flexible all-solid-state asymmetric supercapacitors , 2017 .

[184]  Seeram Ramakrishna,et al.  Textile energy storage: Structural design concepts, material selection and future perspectives , 2016 .

[185]  Lei Zhang,et al.  Assembly of NiO/Ni(OH)2/PEDOT Nanocomposites on Contra Wires for Fiber-Shaped Flexible Asymmetric Supercapacitors. , 2016, ACS applied materials & interfaces.

[186]  Xiaoxiao Liu,et al.  Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes , 2015, Nano Research.

[187]  U. Stimming,et al.  A novel SWCNT-polyoxometalate nanohybrid material as an electrode for electrochemical supercapacitors. , 2015, Nanoscale.

[188]  Zhichuan J. Xu,et al.  Densely-packed graphene/conducting polymer nanoparticle papers for high-volumetric-performance flexible all-solid-state supercapacitors , 2016 .

[189]  Zheng-Hong Lu,et al.  Universal energy-level alignment of molecules on metal oxides. , 2011, Nature materials.

[190]  Meifang Zhu,et al.  Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density , 2017 .

[191]  Gregory W. Bishop,et al.  Ultrathin Graphene–Protein Supercapacitors for Miniaturized Bioelectronics , 2017, Advanced energy materials.

[192]  Wenjie Mai,et al.  Flexible solid-state electrochemical supercapacitors , 2014 .

[193]  Joseph S. Elias,et al.  Conductive MOF electrodes for stable supercapacitors with high areal capacitance. , 2017, Nature materials.

[194]  S. Bianco,et al.  Flexible solid-state CuxO-based pseudo-supercapacitor by thermal oxidation of copper foils , 2016 .

[195]  H. Pang,et al.  Hierarchically Porous NaCoPO4–Co3O4 Hollow Microspheres for Flexible Asymmetric Solid‐State Supercapacitors , 2015 .

[196]  Hui-Ming Cheng,et al.  One-Step Device Fabrication of Phosphorene and Graphene Interdigital Micro-Supercapacitors with High Energy Density. , 2017, ACS nano.

[197]  M. El‐Kady,et al.  Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors , 2012, Science.

[198]  Xinliang Feng,et al.  2D Sandwich‐like Sheets of Iron Oxide Grown on Graphene as High Energy Anode Material for Supercapacitors , 2011, Advanced materials.

[199]  C. Lokhande,et al.  Fabrication of high performance flexible all-solid-state asymmetric supercapacitors with a three dimensional disc-like WO3/stainless steel electrode , 2016 .

[200]  E. Frąckowiak,et al.  Electrochemistry serving people and nature: high-energy ecocapacitors based on redox-active electrolytes. , 2012, ChemSusChem.

[201]  Li-zhen Fan,et al.  Rational design of graphene/porous carbon aerogels for high-performance flexible all-solid-state supercapacitors , 2014 .

[202]  Zenan Yu,et al.  Energy Storing Electrical Cables: Integrating Energy Storage and Electrical Conduction , 2014, Advanced materials.

[203]  Hong Hu,et al.  Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors , 2017 .

[204]  Jeong Sook Ha,et al.  A Patterned Graphene/ZnO UV Sensor Driven by Integrated Asymmetric Micro‐Supercapacitors on a Liquid Metal Patterned Foldable Paper , 2017 .

[205]  Peng Chen,et al.  Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors. , 2015, Angewandte Chemie.

[206]  L. Kong,et al.  Construction of high electrical conductive nickel phosphide alloys with controllable crystalline phase for advanced energy storage , 2017 .

[207]  Yury Gogotsi,et al.  Electromagnetic interference shielding with 2D transition metal carbides (MXenes) , 2016, Science.

[208]  M. El‐Kady,et al.  Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors. , 2014, ACS nano.

[209]  Minglei Hu,et al.  Wire-type MnO 2 /Multilayer graphene/Ni electrode for high-performance supercapacitors , 2016 .

[210]  Guofa Cai,et al.  Highly Stable Transparent Conductive Silver Grid/PEDOT:PSS Electrodes for Integrated Bifunctional Flexible Electrochromic Supercapacitors , 2016 .

[211]  Malika Ammam Polyoxometalates: formation, structures, principal properties, main deposition methods and application in sensing , 2013 .

[212]  Jingjing Liu,et al.  Integration of ultrathin graphene/polyaniline composite nanosheets with a robust 3D graphene framework for highly flexible all-solid-state supercapacitors with superior energy density and exceptional cycling stability , 2017 .

[213]  K. Lu,et al.  Interfacial Deposition of Three-Dimensional Nickel Hydroxide Nanosheet-Graphene Aerogel on Ni Wire for Flexible Fiber Asymmetric Supercapacitors , 2017 .

[214]  Min Wei,et al.  Hierarchical NiMn Layered Double Hydroxide/Carbon Nanotubes Architecture with Superb Energy Density for Flexible Supercapacitors , 2014 .

[215]  Wei Liu,et al.  Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives , 2017, Advanced materials.

[216]  R. Menéndez,et al.  Redox-active electrolyte for carbon nanotube-based electric double layer capacitors , 2011 .

[217]  D. Dubal,et al.  Asymmetric Supercapacitors Based on Reduced Graphene Oxide with Different Polyoxometalates as Positive and Negative Electrodes. , 2017, ChemSusChem.

[218]  C. Lokhande,et al.  An innovative concept of use of redox-active electrolyte in asymmetric capacitor based on MWCNTs/MnO2 and Fe2O3 thin films , 2016, Scientific Reports.

[219]  Oliver G. Schmidt,et al.  Stimulus‐Responsive Micro‐Supercapacitors with Ultrahigh Energy Density and Reversible Electrochromic Window , 2017, Advanced materials.

[220]  Zhong Lin Wang Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics , 2010 .

[221]  S. Ryu,et al.  Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-Dimensional-graphene/graphite-paper , 2017 .

[222]  Yang Huang,et al.  An Intrinsically Stretchable and Compressible Supercapacitor Containing a Polyacrylamide Hydrogel Electrolyte. , 2017, Angewandte Chemie.

[223]  Paul G. Rasmussen,et al.  Charge storage on nanostructured early transition metal nitrides and carbides , 2012 .

[224]  F. Walsh,et al.  Materials and fabrication of electrode scaffolds for deposition of MnO2 and their true performance in supercapacitors , 2015 .

[225]  M. El‐Kady,et al.  Graphene-based materials for flexible supercapacitors. , 2015, Chemical Society reviews.

[226]  Wako Naoi,et al.  New generation "nanohybrid supercapacitor". , 2013, Accounts of chemical research.

[227]  Sang-Hoon Park,et al.  Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT:PSS conductive ultrathin films , 2016 .

[228]  Michaël Deschamps,et al.  Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR. , 2013, Nature materials.

[229]  Teng Zhai,et al.  Conductive membranes of EVA filled with carbon black and carbon nanotubes for flexible energy-storage devices , 2013 .

[230]  T. Chou,et al.  High performance solid-state flexible supercapacitor based on Fe3O4/carbon nanotube/polyaniline ternary films , 2017 .

[231]  Xinyu Xue,et al.  All-solid-state flexible self-charging power cell basing on piezo-electrolyte for harvesting/storing body-motion energy and powering wearable electronics , 2017 .

[232]  Majid Beidaghi,et al.  Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors , 2014 .

[233]  Sreekumar Kurungot,et al.  1D Alignment of PEDOT in a Buckypaper for High‐Performance Solid Supercapacitors , 2016 .

[234]  Yan Huang,et al.  Recent Progress on Flexible and Wearable Supercapacitors. , 2017, Small.

[235]  Jiayou Tao,et al.  High-Performance Solid-State Supercapacitors Fabricated by Pencil Drawing and Polypyrrole Depositing on Paper Substrate , 2015, Nano-Micro Letters.

[236]  Pedro P. Irazoqui,et al.  A Review of Graphene‐Based Electrochemical Microsupercapacitors , 2014 .

[237]  Hsisheng Teng,et al.  Gel Electrolyte Derived from Poly(ethylene glycol) Blending Poly(acrylonitrile) Applicable to Roll‐to‐Roll Assembly of Electric Double Layer Capacitors , 2012 .

[238]  David Pech,et al.  3D RuO2 Microsupercapacitors with Remarkable Areal Energy , 2015, Advanced materials.

[239]  Liping Huang,et al.  Double layer capacitor based on active carbon and its improved capacitive properties using redox additive electrolyte of anthraquinonedisulphonate , 2015 .

[240]  Zhiqiang Niu,et al.  Foldable All‐Solid‐State Supercapacitors Integrated with Photodetectors , 2017 .

[241]  Hui Peng,et al.  A simple and high-performance supercapacitor based on nitrogen-doped porous carbon in redox-mediated sodium molybdate electrolyte , 2015 .

[242]  H. Pang,et al.  Core–shell Co11(HPO3)8(OH)6–Co3O4 hybrids for high-performance flexible all-solid-state asymmetric supercapacitors , 2015 .

[243]  E. Frąckowiak,et al.  Alkali metal iodide/carbon interface as a source of pseudocapacitance , 2011 .

[244]  Lei Zhai,et al.  Coil-Type Asymmetric Supercapacitor Electrical Cables. , 2015, Small.

[245]  Sanggeun Jeon,et al.  Body‐Attachable and Stretchable Multisensors Integrated with Wirelessly Rechargeable Energy Storage Devices , 2016, Advanced materials.

[246]  R. Latham,et al.  Conducting polymer‐based electrochemical redox supercapacitors using proton and lithium ion conducting polymer electrolytes , 1998 .

[247]  J. Chae,et al.  Regulating the respiration of microbe: A bio-inspired high performance microbial supercapacitor with graphene based electrodes and its kinetic features , 2015 .

[248]  Jayan Thomas,et al.  Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions , 2015 .

[249]  Yexiang Tong,et al.  Recent advances in metal nitrides as high-performance electrode materials for energy storage devices , 2015 .

[250]  S. Hashmi,et al.  Ionic liquid based sodium ion conducting gel polymer electrolytes , 2010 .

[251]  D. Dubal,et al.  A high voltage solid state symmetric supercapacitor based on graphene–polyoxometalate hybrid electrodes with a hydroquinone doped hybrid gel-electrolyte , 2015 .

[252]  Malcolm Xing,et al.  Flexible Electrode Design: Fabrication of Freestanding Polyaniline-Based Composite Films for High-Performance Supercapacitors. , 2016, ACS applied materials & interfaces.

[253]  C. Ramasamy,et al.  An activated carbon supercapacitor analysis by using a gel electrolyte of sodium salt-polyethylene oxide in an organic mixture solvent , 2014, Journal of Solid State Electrochemistry.

[254]  Sreekumar Kurungot,et al.  Grafoil-Scotch tape-derived highly conducting flexible substrate and its application as a supercapacitor electrode. , 2017, Nanoscale.

[255]  C. Zhi,et al.  Magnetic-Assisted, Self-Healable, Yarn-Based Supercapacitor. , 2015, ACS nano.

[256]  Jian Zhu,et al.  A high energy density asymmetric all-solid-state supercapacitor based on cobalt carbonate hydroxide nanowire covered N-doped graphene and porous graphene electrodes , 2015 .

[257]  Gleb Yushin,et al.  Chemical vapor deposition and atomic layer deposition for advanced lithium ion batteries and supercapacitors , 2015 .

[258]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[259]  Enoch A. Nagelli,et al.  3D Vertically Aligned CNT/Graphene Hybrids from Layer‐by‐Layer Transfer for Supercapacitors , 2017 .

[260]  Chandrakant D. Lokhande,et al.  A symmetric MnO2/MnO2 flexible solid state supercapacitor operating at 1.6 V with aqueous gel electrolyte , 2016 .

[261]  Hong Deng,et al.  All-Solid-State High-Energy Asymmetric Supercapacitors Enabled by Three-Dimensional Mixed-Valent MnOx Nanospike and Graphene Electrodes. , 2015, ACS applied materials & interfaces.

[262]  Sang-Young Lee,et al.  Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries , 2013 .

[263]  Yusuke Yamauchi,et al.  Nanoarchitectures for Metal-Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications. , 2016, Accounts of chemical research.

[264]  Keryn Lian,et al.  Alkaline quaternary ammonium hydroxides and their polymer electrolytes for electrochemical capacitors , 2014 .

[265]  Zhiyong Fan,et al.  Highly flexible and transferable supercapacitors with ordered three-dimensional MnO2/Au/MnO2 nanospike arrays , 2015 .

[266]  Poramane Chiochan,et al.  High-performance supercapacitors based on silver nanoparticle–polyaniline–graphene nanocomposites coated on flexible carbon fiber paper , 2013 .

[267]  Zheye Zhang,et al.  Functionalized carbonaceous fibers for high performance flexible all-solid-state asymmetric supercapacitors , 2015 .

[268]  P. Taberna,et al.  Relation between the ion size and pore size for an electric double-layer capacitor. , 2008, Journal of the American Chemical Society.

[269]  John A. Rogers,et al.  Mechanics of stretchable batteries and supercapacitors , 2015 .

[270]  Jen-Ming Yang,et al.  Preparation of graphene-based poly(vinyl alcohol)/chitosan nanocomposites membrane for alkaline solid electrolytes membrane , 2015 .

[271]  Yang Zhao,et al.  A Shape-Memory Supercapacitor Fiber. , 2015, Angewandte Chemie.

[272]  N. Uria,et al.  Transient storage of electrical charge in biofilms of Shewanella oneidensis MR-1 growing in a microbial fuel cell. , 2011, Environmental science & technology.

[273]  Dingshan Yu,et al.  Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors , 2010 .

[274]  Tao Jiang,et al.  Toward the blue energy dream by triboelectric nanogenerator networks , 2017 .

[275]  M. Miao,et al.  Flexible Asymmetric Threadlike Supercapacitors Based on NiCo2 Se4 Nanosheet and NiCo2 O4 /Polypyrrole Electrodes. , 2017, ChemSusChem.

[276]  Korneel Rabaey,et al.  Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies , 2012, Science.

[277]  Bing Li,et al.  Leaf Vein‐Inspired Nanochanneled Graphene Film for Highly Efficient Micro‐Supercapacitors , 2015 .

[278]  Feijun Wang,et al.  Cellulose nanofiber–graphene all solid-state flexible supercapacitors , 2013 .

[279]  Yi Xi,et al.  Faradic redox active material of Cu7S4 nanowires with a high conductance for flexible solid state supercapacitors. , 2015, Nanoscale.

[280]  S. Jun,et al.  All-solid-state flexible asymmetric micro supercapacitors based on cobalt hydroxide and reduced graphene oxide electrodes , 2016 .

[281]  Q. Yan,et al.  Nanostructured metal sulfides for energy storage. , 2014, Nanoscale.

[282]  Jianqiang Wang,et al.  Flexible and Wire‐Shaped Micro‐Supercapacitor Based on Ni(OH)2‐Nanowire and Ordered Mesoporous Carbon Electrodes , 2014 .

[283]  Jeeyoung Yoo,et al.  Quasi-solid-state flexible asymmetric supercapacitor based on ferroferric oxide nanoparticles on porous silicon carbide with redox-active p-nitroaniline gel electrolyte , 2017 .

[284]  W. Tang,et al.  Controllable functionalized carbon fabric for high-performance all-carbon-based supercapacitors , 2014 .

[285]  Kuei-Hsien Chen,et al.  Conducting polymer‐based flexible supercapacitor , 2015 .

[286]  Zheng Lou,et al.  Flexible planar concentric circular micro-supercapacitor arrays for wearable gas sensing application , 2017 .

[287]  Huaiguo Xue,et al.  One-pot synthesis of heterogeneous Co3O4-nanocube/Co(OH)2-nanosheet hybrids for high-performance flexible asymmetric all-solid-state supercapacitors , 2017 .

[288]  K. Müllen,et al.  Use of organic precursors and graphenes in the controlled synthesis of carbon-containing nanomaterials for energy storage and conversion. , 2013, Accounts of chemical research.

[289]  D. Pech,et al.  Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. , 2017, Nature nanotechnology.

[290]  Wenjun Meng,et al.  Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability , 2015 .

[291]  E. Giannelis,et al.  Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance , 2014 .

[292]  N Georgi,et al.  A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations. , 2011, Physical chemistry chemical physics : PCCP.

[293]  Siegfried Bauer,et al.  Flexible electronics: Sophisticated skin. , 2013, Nature materials.

[294]  Mircea Dincă,et al.  Electrically Conductive Porous Metal-Organic Frameworks. , 2016, Angewandte Chemie.

[295]  Hao Sun,et al.  A novel “energy fiber” by coaxially integrating dye-sensitized solar cell and electrochemical capacitor , 2014 .

[296]  Teng Zhai,et al.  High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. , 2013, Nano letters.

[297]  Jian Li,et al.  Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes , 2017 .

[298]  Jee Youn Hwang,et al.  Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage , 2015, Proceedings of the National Academy of Sciences.

[299]  Fei Xiao,et al.  Hierarchically structured MnO2/graphene/carbon fiber and porous graphene hydrogel wrapped copper wire for fiber-based flexible all-solid-state asymmetric supercapacitors , 2015, Journal of Materials Chemistry A.

[300]  Michael Keidar,et al.  Paper-based ultracapacitors with carbon nanotubes-graphene composites , 2014 .

[301]  S. Zhu,et al.  Hierarchical Cu(OH)2@Ni2(OH)2CO3 core/shell nanowire arrays in situ grown on three-dimensional copper foam for high-performance solid-state supercapacitors , 2017 .

[302]  J. Jang,et al.  High performance asymmetric supercapacitor twisted from carbon fiber/MnO2 and carbon fiber/MoO3 , 2017 .

[303]  Hang Shi,et al.  Activated carbons and double layer capacitance , 1996 .

[304]  Grzegorz Lota,et al.  Striking capacitance of carbon/iodide interface , 2009 .

[305]  S. Trasatti The absolute electrode potential: an explanatory note (Recommendations 1986) , 1986 .

[306]  B. Wei,et al.  All-Solid-State Stretchable Pseudocapacitors Enabled by Carbon Nanotube Film-Capped Sandwich-like Electrodes. , 2016, ACS applied materials & interfaces.

[307]  Heejoon Ahn,et al.  Unusual energy storage and charge retention in Co-based metal–organic-frameworks , 2012 .

[308]  D. Dubal,et al.  Morphological tuning of CuO nanostructures by simple preparative parameters in SILAR method and their consequent effect on supercapacitors , 2016 .

[309]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[310]  Xiao Xiao,et al.  Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors , 2017 .

[311]  Lu Wang,et al.  Flexible Solid-State Supercapacitor Based on a Metal-Organic Framework Interwoven by Electrochemically-Deposited PANI. , 2015, Journal of the American Chemical Society.

[312]  Hong Hu,et al.  High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn , 2016 .

[313]  Yafei Zhang,et al.  Reduced graphene oxide/polypyrrole nanotube papers for flexible all-solid-state supercapacitors with excellent rate capability and high energy density , 2016 .

[314]  Fan Xu,et al.  Ultramicroporous carbon cloth for flexible energy storage with high areal capacitance , 2017 .

[315]  D. Lupo,et al.  Preparation of Supercapacitors on Flexible Substrates with Electrodeposited PEDOT/Graphene Composites. , 2015, ACS applied materials & interfaces.

[316]  J. Bell,et al.  2-Methylimidazole-Derived Ni-Co Layered Double Hydroxide Nanosheets as High Rate Capability and High Energy Density Storage Material in Hybrid Supercapacitors. , 2017, ACS applied materials & interfaces.

[317]  Zheng Lou,et al.  Highly Stretchable Micro‐Supercapacitor Arrays with Hybrid MWCNT/PANI Electrodes , 2017 .

[318]  G. Cui,et al.  Fabrication of transition metal selenides and their applications in energy storage , 2017 .

[319]  Hongbing Lu,et al.  High-Performance All-Solid-State Supercapacitor Based on the Assembly of Graphene and Manganese(II) Phosphate Nanosheets , 2014 .

[320]  Qingwen Li,et al.  Fabrication and functionalization of carbon nanotube films for high-performance flexible supercapacitors , 2015 .

[321]  B. Dunn,et al.  Pseudocapacitive oxide materials for high-rate electrochemical energy storage , 2014 .

[322]  Aiqing Zhang,et al.  Fabrication of Supercapacitors from NiCo2O4 Nanowire/Carbon‐Nanotube Yarn for Ultraviolet Photodetectors and Portable Electronics , 2017 .

[323]  P. Taberna,et al.  Ionogel-based solid-state supercapacitor operating over a wide range of temperature , 2016 .

[324]  Jing Xu,et al.  Efficient synthesis of hierarchical NiO nanosheets for high-performance flexible all-solid-state supercapacitors , 2014 .

[325]  Meryl D. Stoller,et al.  Review of Best Practice Methods for Determining an Electrode Material's Performance for Ultracapacitors , 2010 .

[326]  D. Pech,et al.  Hydrous RuO2/carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors , 2014 .

[327]  Faxing Wang,et al.  Latest advances in supercapacitors: from new electrode materials to novel device designs. , 2017, Chemical Society reviews.

[328]  Fei Li,et al.  MnO2-based nanostructures for high-performance supercapacitors , 2015 .

[329]  Andrew Melton,et al.  ウェットエッチングによるAl 2 O 3 /Si基板上の自立InGaN LED素子の開発 , 2011 .

[330]  Pooi See Lee,et al.  Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications , 2017 .

[331]  Yuanlong Shao,et al.  High-performance flexible asymmetric supercapacitors based on 3D porous graphene/MnO2 nanorod and graphene/Ag hybrid thin-film electrodes , 2013 .

[332]  Xianfeng Li,et al.  Highly Flexible and Conductive Cellulose-Mediated PEDOT:PSS/MWCNT Composite Films for Supercapacitor Electrodes. , 2017, ACS applied materials & interfaces.

[333]  N. Uvarov,et al.  All-solid-state asymmetric supercapacitors with solid composite electrolytes , 2013 .

[334]  Zheng Hu,et al.  Lamellar K2Co3(P2O7)2·2H2O nanocrystal whiskers: High-performance flexible all-solid-state asymmetric micro-supercapacitors via inkjet printing , 2015 .

[335]  Very high thermoelectric power factor in a Fe3O4/SiO2/p-type Si(100)heterostructure , 2014, 1406.2814.

[336]  Chenguo Hu,et al.  Charge storage in KCu7S4 as redox active material for a flexible all-solid-state supercapacitor , 2016 .

[337]  Kejun Zhang,et al.  In situ synthesis of a graphene/titanium nitride hybrid material with highly improved performance for lithium storage , 2012 .

[338]  Ke Li,et al.  Free-Standing Conducting Polymer Films for High-Performance Energy Devices. , 2016, Angewandte Chemie.

[339]  Kai Zhu,et al.  Aqueous rechargeable lithium batteries as an energy storage system of superfast charging , 2013 .

[340]  Hui Peng,et al.  High performance solid-state supercapacitor with PVA–KOH–K3[Fe(CN)6] gel polymer as electrolyte and separator , 2014 .

[341]  Chao Gao,et al.  Flexible high performance wet-spun graphene fiber supercapacitors , 2013 .

[342]  K. Lian,et al.  Polyacrylamide-lithium chloride polymer electrolyte and its applications in electrochemical capacitors , 2017 .

[343]  S. Hashmi,et al.  Ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate-based gel polymer electrolyte for electrochemical capacitors , 2013 .

[344]  M. Winter,et al.  An Investigation on the Use of a Methacrylate-Based Gel Polymer Electrolyte in High Power Devices , 2013 .

[345]  Teng Zhai,et al.  Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. , 2012, Nano letters.

[346]  Keren Dai,et al.  Bioinspired stretchable triboelectric nanogenerator as energy-harvesting skin for self-powered electronics , 2017 .

[347]  D. Dubal,et al.  Nickel cobaltite as an emerging material for supercapacitors: An overview , 2015 .

[348]  S. Pitchumani,et al.  A new class of alkaline polymer gel electrolyte for carbon aerogel supercapacitors , 2006 .

[349]  K. Lian,et al.  Proton conducting ionic liquid electrolytes for liquid and solid-state electrochemical pseudocapacitors , 2016 .

[350]  V. Presser,et al.  Carbons and Electrolytes for Advanced Supercapacitors , 2014, Advanced materials.

[351]  James M. Tour,et al.  Flexible and stackable laser-induced graphene supercapacitors. , 2015, ACS applied materials & interfaces.

[352]  L. Dai Functionalization of graphene for efficient energy conversion and storage. , 2013, Accounts of chemical research.

[353]  Zhong Lin Wang,et al.  Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. , 2011, Angewandte Chemie.

[354]  Lina Ma,et al.  A flexible polyaniline/graphene/bacterial cellulose supercapacitor electrode , 2017 .

[355]  Y. Kumar,et al.  Performance Studies of Activated Charcoal Based Electrical Double Layer Capacitors with Ionic Liquid Gel Polymer Electrolytes , 2010 .

[356]  Development of all-solid-state mediator-enhanced supercapacitors with polyvinylidene fluoride/lithiu , 2011 .

[357]  Soo‐Hyoung Lee,et al.  Flexible-wire shaped all-solid-state supercapacitors based on facile electropolymerization of polythiophene with ultra-high energy density , 2016 .

[358]  S. Hashmi,et al.  Quasi-solid-state pseudocapacitors using proton-conducting gel polymer electrolyte and poly(3-methyl thiophene)–ruthenium oxide composite electrodes , 2014, Journal of Solid State Electrochemistry.

[359]  Sang-Young Lee,et al.  All-inkjet-printed, solid-state flexible supercapacitors on paper , 2016 .

[360]  Yan Yu,et al.  N,S co-doped 3D mesoporous carbon–Co3Si2O5(OH)4 architectures for high-performance flexible pseudo-solid-state supercapacitors , 2017 .

[361]  Emmanuel P. Giannelis,et al.  A new nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica , 2012 .

[362]  K. Cai,et al.  High‐Performance and Breathable Polypyrrole Coated Air‐Laid Paper for Flexible All‐Solid‐State Supercapacitors , 2017 .

[363]  Ji Hyun Nam,et al.  Supercapacitive properties of electrodeposited RuO2 electrode in acrylic gel polymer electrolytes , 2013 .

[364]  A. Alec Talin,et al.  High-contrast and fast electrochromic switching enabled by plasmonics , 2016, Nature Communications.

[365]  Guowei Yang,et al.  All-Solid-State Symmetric Supercapacitor Based on Co3O4 Nanoparticles on Vertically Aligned Graphene. , 2015, ACS nano.

[366]  Keryn Lian,et al.  Proton-conducting polymer electrolytes and their applications in solid supercapacitors: a review , 2014 .

[367]  Nazmul Karim,et al.  Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications , 2017 .

[368]  Yongsong Luo,et al.  Ultrathin ZnS nanosheet/carbon nanotube hybrid electrode for high-performance flexible all-solid-state supercapacitor , 2017, Nano Research.

[369]  Xiaojuan Hou,et al.  Core–Shell CuCo2O4@MnO2 Nanowires on Carbon Fabrics as High‐Performance Materials for Flexible, All‐Solid‐State, Electrochemical Capacitors , 2014 .

[370]  Seung Hwan Ko,et al.  All-solid-state flexible supercapacitors by fast laser annealing of printed metal nanoparticle layers , 2015 .

[371]  Yue Wu,et al.  One-step electrochemically expanded graphite foil for flexible all-solid supercapacitor with high rate performance , 2017 .

[372]  P. Ajayan,et al.  Flexible energy storage devices based on nanocomposite paper , 2007, Proceedings of the National Academy of Sciences.

[373]  Kai Jiang,et al.  Flexible fiber energy storage and integrated devices: recent progress and perspectives , 2015 .

[374]  S. T. Senthilkumar,et al.  Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte , 2013 .

[375]  Jun Wang,et al.  Coaxial CoMoO4 nanowire arrays with chemically integrated conductive coating for high-performance flexible all-solid-state asymmetric supercapacitors. , 2015, Nanoscale.

[376]  Zifeng Wang,et al.  A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte , 2015, Nature Communications.

[377]  H. Abruña,et al.  Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. , 2001, Chemical reviews.

[378]  Chaohe Xu,et al.  Graphene-based electrodes for electrochemical energy storage , 2013 .

[379]  Minshen Zhu,et al.  Highly Flexible, Freestanding Supercapacitor Electrode with Enhanced Performance Obtained by Hybridizing Polypyrrole Chains with MXene , 2016 .

[380]  Zhiwei Wang,et al.  Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit , 2015, Nano Research.

[381]  Teng Zhai,et al.  Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor , 2011 .

[382]  S. R. Majid,et al.  Super-capacitive electro-chemical performance of polymer blend gel polymer electrolyte (GPE) in carbon-based electrical double-layer capacitors , 2013 .

[383]  D. Xiao,et al.  A phytic acid etched Ni/Fe nanostructure based flexible network as a high-performance wearable hybrid energy storage device , 2017 .

[384]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[385]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[386]  J. Tu,et al.  Metal oxide/hydroxide-based materials for supercapacitors , 2014 .

[387]  K. Lian,et al.  Investigations of multilayer polyoxometalates-modified carbon nanotubes for electrochemical capacitors , 2011 .

[388]  Min Han,et al.  Polypyrrole-polyoxometalate/reduced graphene oxide ternary nanohybrids for flexible, all-solid-state supercapacitors. , 2015, Chemical communications.

[389]  Costas P. Grigoropoulos,et al.  Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide , 2015 .

[390]  Lin Ye,et al.  Superior performance of ZnCo2O4/ZnO@multiwall carbon nanotubes with laminated shape assembled as highly practical all-solid-state asymmetric supercapacitors , 2017 .

[391]  Yan Liu,et al.  Mesoporous metal-organic framework materials. , 2012, Chemical Society reviews.

[392]  S. Yao,et al.  Nanomaterial‐Enabled Stretchable Conductors: Strategies, Materials and Devices , 2015, Advanced materials.

[393]  Yan Liu,et al.  Graphene/carbon black hybrid film for flexible and high rate performance supercapacitor , 2014 .

[394]  Wenping Si,et al.  On chip, all solid-state and flexible micro-supercapacitors with high performance based on MnOx/Au multilayers , 2013 .

[395]  K. Lian,et al.  Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics , 2013 .

[396]  Z. Lou,et al.  Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications , 2016, Nano Research.

[397]  Kun Zhang,et al.  Flexible, in-plane, and all-solid-state micro-supercapacitors based on printed interdigital Au/polyaniline network hybrid electrodes on a chip , 2014 .

[398]  Z. Huang,et al.  Three-Dimensional NiCo2O4@Polypyrrole Coaxial Nanowire Arrays on Carbon Textiles for High-Performance Flexible Asymmetric Solid-State Supercapacitor. , 2015, ACS applied materials & interfaces.

[399]  Srinivasan Sampath,et al.  Hydrogel-polymer electrolytes for electrochemical capacitors: an overview , 2009 .

[400]  Huisheng Peng,et al.  Integrated Polymer Solar Cell and Electrochemical Supercapacitor in a Flexible and Stable Fiber Format , 2014, Advanced materials.

[401]  Guofa Cai,et al.  Electrochromo-supercapacitor based on direct growth of NiO nanoparticles , 2015 .

[402]  Ray H. Baughman,et al.  Elastomeric and Dynamic MnO2/CNT Core–Shell Structure Coiled Yarn Supercapacitor , 2016 .

[403]  V. Ruiz,et al.  Stable graphene-polyoxometalate nanomaterials for application in hybrid supercapacitors. , 2014, Physical chemistry chemical physics : PCCP.

[404]  Q. Wang,et al.  Hierarchical core–shell heterostructure of porous carbon nanofiber@ZnCo2O4 nanoneedle arrays: advanced binder-free electrodes for all-solid-state supercapacitors , 2015 .

[405]  D. He,et al.  Flexible and Wearable All‐Solid‐State Supercapacitors with Ultrahigh Energy Density Based on a Carbon Fiber Fabric Electrode , 2017 .

[406]  Chenguo Hu,et al.  Flexible full-solid state supercapacitors based on zinc sulfide spheres growing on carbon textile with superior charge storage , 2016 .

[407]  Mingfei Shao,et al.  A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core–shell nanoarrays , 2016 .

[408]  Y. Yamauchi,et al.  Metal-Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects. , 2017, ACS nano.

[409]  Lan Jiang,et al.  Transparent, flexible, and solid-state supercapacitors based on graphene electrodes , 2013 .

[410]  R. K. Jena,et al.  Development of 3D Urchin-Shaped Coaxial Manganese Dioxide@Polyaniline (MnO2@PANI) Composite and Self-Assembled 3D Pillared Graphene Foam for Asymmetric All-Solid-State Flexible Supercapacitor Application. , 2017, ACS applied materials & interfaces.

[411]  Zhijie Shi,et al.  High gas-sensor and supercapacitor performance of porous Co3O4 ultrathin nanosheets , 2015 .

[412]  S. Murugesan,et al.  Pulsed laser deposition of anatase and rutile TiO2 thin films , 2007 .

[413]  Jingguang G. Chen,et al.  Nanostructured electrodes for high-performance pseudocapacitors. , 2013, Angewandte Chemie.

[414]  Jianfeng Zang,et al.  Stretchable and High-Performance Supercapacitors with Crumpled Graphene Papers , 2014, Scientific Reports.

[415]  Yoshito Andou,et al.  Flexible Graphene-Based Supercapacitors: A Review , 2016 .

[416]  Derek R Lovley,et al.  Supercapacitors based on c-type cytochromes using conductive nanostructured networks of living bacteria. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[417]  Zhisheng Zhao,et al.  Flexible All‐Solid‐State Supercapacitors based on Liquid‐Exfoliated Black‐Phosphorus Nanoflakes , 2016, Advanced materials.

[418]  Huisheng Peng,et al.  A redox-active gel electrolyte for fiber-shaped supercapacitor with high area specific capacitance , 2015 .

[419]  Min Han,et al.  3D Porous Nanoarchitectures Derived from SnS/S-Doped Graphene Hybrid Nanosheets for Flexible All-Solid-State Supercapacitors. , 2017, Small.

[420]  Zhang Lan,et al.  A novel redox-mediated gel polymer electrolyte for high-performance supercapacitor , 2012 .

[421]  Michiel Sprik,et al.  Alignment of electronic energy levels at electrochemical interfaces. , 2012, Physical chemistry chemical physics : PCCP.

[422]  Min Han,et al.  Two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors. , 2014, ACS nano.

[423]  Qingwen Li,et al.  Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors. , 2013, ACS applied materials & interfaces.

[424]  Feng Li,et al.  Graphene–Cellulose Paper Flexible Supercapacitors , 2011 .

[425]  Kazuhito Tsukagoshi,et al.  Rational design of a high performance all solid state flexible micro-supercapacitor on paper , 2013 .

[426]  B. Liu,et al.  Flexible Energy‐Storage Devices: Design Consideration and Recent Progress , 2014, Advanced materials.

[427]  Yong Ding,et al.  Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems. , 2013, ACS nano.

[428]  H. Yang,et al.  Three-dimensional Co3O4@C@Ni3S2 sandwich-structured nanoneedle arrays: towards high-performance flexible all-solid-state asymmetric supercapacitors , 2015 .

[429]  Shishan Wu,et al.  All-solid-state flexible supercapacitors based on highly dispersed polypyrrole nanowire and reduced graphene oxide composites. , 2014, ACS applied materials & interfaces.

[430]  Qiao Chen,et al.  Effect of different gel electrolytes on graphene-based solid-state supercapacitors , 2014 .

[431]  Weiqi Wang,et al.  Flexible full-solid-state supercapacitors based on self-assembly of mesoporous MoSe2 nanomaterials , 2017 .

[432]  Hiroshi Inoue,et al.  New Electric Double Layer Capacitor with Polymer Hydrogel Electrolyte , 2003 .

[433]  B. D. Boruah,et al.  A flexible ternary oxide based solid-state supercapacitor with excellent rate capability , 2016 .

[434]  Jianshe Liu,et al.  Alkaline solid polymer electrolyte membranes based on structurally modified PVA/PVP with improved alkali stability , 2010 .

[435]  Haiyan Zhang,et al.  Transparent and Self-Supporting Graphene Films with Wrinkled- Graphene-Wall-Assembled Opening Polyhedron Building Blocks for High Performance Flexible/Transparent Supercapacitors. , 2017, ACS applied materials & interfaces.

[436]  M. Ishikawa,et al.  New Electric Double‐Layer Capacitors Using Polymer Solid Electrolytes Containing Tetraalkylammonium Salts , 1993 .

[437]  Sreekumar Kurungot,et al.  An all-solid-state-supercapacitor possessing a non-aqueous gel polymer electrolyte prepared using a UV-assisted in situ polymerization strategy , 2017 .

[438]  G. Wallace,et al.  Mechanically strong high performance layered polypyrrole nano fibre/graphene film for flexible solid state supercapacitor , 2014 .

[439]  Songtao Lu,et al.  Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. , 2012, Nano letters.

[440]  Xin-bo Zhang,et al.  Materials Design and System Construction for Conventional and New‐Concept Supercapacitors , 2017, Advanced science.

[441]  P. Tamilarasan,et al.  Graphene based all-solid-state supercapacitors with ionic liquid incorporated polyacrylonitrile electrolyte , 2013 .

[442]  Yu-Fei Song,et al.  Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems , 2015 .

[443]  M. Islam,et al.  Electron affinity and work function of polycrystalline SnO2 thin film , 1986 .

[444]  Paul J A Kenis,et al.  Microfluidic hydrogen fuel cell with a liquid electrolyte. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[445]  Weiguo Hu,et al.  Wearable Self‐Charging Power Textile Based on Flexible Yarn Supercapacitors and Fabric Nanogenerators , 2016, Advanced materials.

[446]  Yong Ding,et al.  Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. , 2014, Nano letters.

[447]  S. I. Cordoba de Torresi,et al.  Conducting polymers revisited: applications in energy, electrochromism and molecular recognition , 2017, Journal of Solid State Electrochemistry.

[448]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[449]  Le-le Cao,et al.  Flexible all-solid-state high-performance supercapacitor based on electrochemically synthesized carbon quantum dots/polypyrrole composite electrode , 2017 .

[450]  C. Zhi,et al.  Enhanced tolerance to stretch-induced performance degradation of stretchable MnO2-based supercapacitors. , 2015, ACS applied materials & interfaces.

[451]  G. Han,et al.  Flexible solid–state supercapacitor of metal–organic framework coated on carbon nanotube film interconnected by electrochemically -codeposited PEDOT-GO , 2016 .

[452]  Jitong Wang,et al.  Free-Standing T-Nb₂O₅/Graphene Composite Papers with Ultrahigh Gravimetric/Volumetric Capacitance for Li-Ion Intercalation Pseudocapacitor. , 2015, ACS nano.

[453]  Hao Wang,et al.  All-solid-state flexible microsupercapacitor based on two-dimensional titanium carbide , 2016 .

[454]  S. Ogale,et al.  CO2 Laser Direct Written MOF-Based Metal-Decorated and Heteroatom-Doped Porous Graphene for Flexible All-Solid-State Microsupercapacitor with Extremely High Cycling Stability. , 2016, ACS applied materials & interfaces.

[455]  Xu Xiao,et al.  Freestanding Mesoporous VN/CNT Hybrid Electrodes for Flexible All‐Solid‐State Supercapacitors , 2013, Advanced materials.

[456]  Jun Wei,et al.  Emergence of fiber supercapacitors. , 2015, Chemical Society reviews.

[457]  P. Haldar,et al.  Electrochemical oxidation behavior of titanium nitride based electrocatalysts under PEM fuel cell conditions , 2010 .

[458]  Zhenbo Cai,et al.  An Integrated "energy wire" for both photoelectric conversion and energy storage. , 2012, Angewandte Chemie.

[459]  Paula T Hammond,et al.  Facilitated ion transport in all-solid-state flexible supercapacitors. , 2011, ACS nano.

[460]  B. Zhang,et al.  Three-dimensional graphene combined with hierarchical CuS for the design of flexible solid-state supercapacitors , 2017 .

[461]  Bruce Dunn,et al.  Efficient storage mechanisms for building better supercapacitors , 2016, Nature Energy.

[462]  Bruce Dunn,et al.  Multidimensional materials and device architectures for future hybrid energy storage , 2016, Nature Communications.

[463]  Jinqiu Zhou,et al.  Interconnected three-dimensional V2O5/polypyrrole network nanostructures for high performance solid-state supercapacitors , 2015 .

[464]  Xin Cai,et al.  Stretchable, Conductive, and Stable PEDOT‐Modified Textiles through a Novel In Situ Polymerization Process for Stretchable Supercapacitors , 2016 .

[465]  Zhibin Lei,et al.  Reduced graphene oxide/Mn3O4 nanocrystals hybrid fiber for flexible all-solid-state supercapacitor with excellent volumetric energy density , 2017 .

[466]  Aiqing Zhang,et al.  High performance two-ply carbon nanocomposite yarn supercapacitors enhanced with a platinum filament and in situ polymerized polyaniline nanowires , 2016 .

[467]  Wenqiang Wang,et al.  The perfect matching between the low-cost Fe2O3 nanowire anode and the NiO nanoflake cathode significantly enhances the energy density of asymmetric supercapacitors , 2015 .

[468]  Xiaoyan Hu,et al.  Highly flexible all-solid-state supercapacitors based on carbon nanotube/polypyrrole composite films and fibers , 2016 .

[469]  Hui Pan,et al.  Cross-linking of polymer and ionic liquid as high-performance gel electrolyte for flexible solid-state supercapacitors , 2017 .

[470]  Yury Gogotsi,et al.  Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide , 2013, Science.

[471]  V. Ruiz,et al.  Hybrid electrodes based on polyoxometalate-carbon materials for electrochemical supercapacitors , 2012 .

[472]  Xu Xiao,et al.  Paper-based supercapacitors for self-powered nanosystems. , 2012, Angewandte Chemie.

[473]  Hui Huang,et al.  All Metal Nitrides Solid‐State Asymmetric Supercapacitors , 2015, Advanced materials.

[474]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[475]  Teng Zhai,et al.  WO3–x@Au@MnO2 Core–Shell Nanowires on Carbon Fabric for High‐Performance Flexible Supercapacitors , 2012, Advanced materials.

[476]  Gang Xu,et al.  Conductive Metal–Organic Framework Nanowire Array Electrodes for High‐Performance Solid‐State Supercapacitors , 2017 .

[477]  K. Lian,et al.  Polyoxometalate modified inorganic–organic nanocomposite materials for energy storage applications: A review , 2015 .

[478]  Gengchao Wang,et al.  Flexible all-solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly(vinyl alcohol)–H2SO4 porous gel electrolytes , 2014 .

[479]  P. Sivaraman,et al.  Poly(3-methyl thiophene)-activated carbon hybrid supercapacitor based on gel polymer electrolyte , 2006 .

[480]  Bin Liu,et al.  Flexible, planar-integrated, all-solid-state fiber supercapacitors with an enhanced distributed-capacitance effect. , 2013, Small.

[481]  B. Tay,et al.  Paper-based all-solid-state flexible micro-supercapacitors with ultra-high rate and rapid frequency response capabilities , 2016 .

[482]  Wei Zhang,et al.  High‐Performance Fiber‐Shaped All‐Solid‐State Asymmetric Supercapacitors Based on Ultrathin MnO2 Nanosheet/Carbon Fiber Cathodes for Wearable Electronics , 2016 .

[483]  Qinghua Zhang,et al.  High-performance all-solid-state flexible supercapacitors based on manganese dioxide/carbon fibers , 2016 .

[484]  C. Zhi,et al.  Proton-insertion-enhanced pseudocapacitance based on the assembly structure of tungsten oxide. , 2014, ACS applied materials & interfaces.

[485]  P. Gómez‐Romero,et al.  Nanocomposite Hybrid Molecular Materials for Application in Solid‐State Electrochemical Supercapacitors , 2005 .

[486]  T. Zhai,et al.  Smart supercapacitors with deformable and healable functions , 2017 .

[487]  Zhen Zhou,et al.  Recent advances in MXene: Preparation, properties, and applications , 2015 .

[488]  Yueming Sun,et al.  Polyhedron-core/double-shell CuO@C@MnO2 decorated nickel foam for high performance all-solid-state supercapacitors , 2017 .

[489]  Xiaoming Sun,et al.  Flexible Transparent Supercapacitors Based on Hierarchical Nanocomposite Films. , 2017, ACS applied materials & interfaces.

[490]  Piers Andrew,et al.  A nanostructured electrochromic supercapacitor. , 2012, Nano letters.

[491]  Yunqi Liu,et al.  Scalable Synthesis of Freestanding Sandwich-structured Graphene/Polyaniline/Graphene Nanocomposite Paper for Flexible All-Solid-State Supercapacitor , 2015, Scientific Reports.

[492]  M. Metikoš-huković,et al.  Electrochemical and thermal oxidation of TiN coatings studied by XPS , 1995 .

[493]  Zhiqiang Niu,et al.  Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. , 2016, Chemical Society reviews.

[494]  Xiaogang Zhang,et al.  All solid-state supercapacitor with phosphotungstic acid as the proton-conducting electrolyte , 2004 .

[495]  Christina M. Jones,et al.  Nanostructured all-solid-state supercapacitor based on Li2S-P2S5 glass-ceramic electrolyte , 2012 .

[496]  Xuming Zhang,et al.  Nitrogen‐Doped Carbon Encapsulated Mesoporous Vanadium Nitride Nanowires as Self‐Supported Electrodes for Flexible All‐Solid‐State Supercapacitors , 2015 .

[497]  S. T. Senthilkumar,et al.  Redox additive aqueous polymer gel electrolyte for an electric double layer capacitor , 2012 .

[498]  T. Chou,et al.  Temperature effects on electrochemical performance of carbon nanotube film based flexible all-solid-state supercapacitors , 2017 .

[499]  Zhixiang Wei,et al.  Conducting polymer nanowire arrays for high performance supercapacitors. , 2014, Small.

[500]  Hao Sun,et al.  Energy harvesting and storage in 1D devices , 2017 .

[501]  A. Sinitskii,et al.  Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes , 2016 .

[502]  Zhikun Peng,et al.  Design and Tailoring of the 3D Macroporous Hydrous RuO2 Hierarchical Architectures with a Hard-Template Method for High-Performance Supercapacitors. , 2017, ACS applied materials & interfaces.

[503]  Genevieve Dion,et al.  Textile energy storage in perspective , 2014 .

[504]  Minshen Zhu,et al.  Multifunctional Energy Storage and Conversion Devices , 2016, Advanced materials.

[505]  Zhen-Dong Huang,et al.  Flexible all-solid-state supercapacitors based on polyaniline orderly nanotubes array. , 2017, Nanoscale.

[506]  T. Trung,et al.  Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human‐Activity Monitoringand Personal Healthcare , 2016, Advanced materials.

[507]  Luzhuo Chen,et al.  Highly flexible and all-solid-state paperlike polymer supercapacitors. , 2010, Nano letters.

[508]  Zhijun Qiao,et al.  Free-standing porous carbon nanofiber/ultrathin graphite hybrid for flexible solid-state supercapacitors. , 2015, ACS nano.

[509]  K. Lian,et al.  Pseudocapacitive behavior of Keggin type polyoxometalate mixtures , 2014 .

[510]  Hui Xia,et al.  Hierarchically Structured Co3O4@Pt@MnO2 Nanowire Arrays for High-Performance Supercapacitors , 2013, Scientific Reports.

[511]  Yu-Kuei Hsu,et al.  Highly flexible supercapacitors with manganese oxide nanosheet/carbon cloth electrode , 2011 .

[512]  Y. Kumar,et al.  Structural and electrochemical properties of succinonitrile-based gel polymer electrolytes: role of ionic liquid addition. , 2013, The journal of physical chemistry. B.

[513]  Lili Zhang,et al.  Graphene-based materials as supercapacitor electrodes , 2010 .

[514]  Hiroshi Inoue,et al.  Electrochemical characteristics of electric double layer capacitor using sulfonated polypropylene separator impregnated with polymer hydrogel electrolyte , 2004 .

[515]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[516]  W. Mai,et al.  Quantitative Analysis of Charge Storage Process of Tungsten Oxide that Combines Pseudocapacitive and Electrochromic Properties , 2015 .

[517]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[518]  B. Wei,et al.  High-performance all-solid-state asymmetric stretchable supercapacitors based on wrinkled MnO2/CNT and Fe2O3/CNT macrofilms , 2016 .

[519]  Zhiyu Wang,et al.  A coaxial yarn electrode based on hierarchical MoS2 nanosheets/carbon fiber tows for flexible solid-state supercapacitors , 2016 .

[520]  Haitao Huang,et al.  A rectification-free piezo-supercapacitor with a polyvinylidene fluoride separator and functionalized carbon cloth electrodes , 2015 .

[521]  Weilie Zhou,et al.  Three-Dimensional Cobalt Phosphide Nanowire Arrays as Negative Electrode Material for Flexible Solid-State Asymmetric Supercapacitors. , 2017, ACS applied materials & interfaces.

[522]  Zhen-Bing Wang,et al.  Hierarchical porous carbon from hazardous waste oily sludge for all-solid-state flexible supercapacitor , 2017 .

[523]  Keryn Lian,et al.  Effect of SiO2 on conductivity and structural properties of PEO–EMIHSO4 polymer electrolyte and enabled solid electrochemical capacitors , 2013 .

[524]  Lei Zhang,et al.  A review of electrolyte materials and compositions for electrochemical supercapacitors. , 2015, Chemical Society reviews.

[525]  Huaiguo Xue,et al.  High‐Performance Flexible Solid‐State Asymmetric Supercapacitors based on Ordered Mesoporous Cobalt Oxide , 2017 .

[526]  A. Watanabe,et al.  Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment , 2016 .

[527]  Chee Kai Chua,et al.  Layer-by-layer printing of laminated graphene-based interdigitated microelectrodes for flexible planar micro-supercapacitors , 2015 .

[528]  M. Miao,et al.  Fiber-shaped Supercapacitor and Electrocatalyst Containing of Multiple Carbon Nanotube Yarns and One Platinum Wire , 2017 .

[529]  Jun Zhang,et al.  An all-solid-state, lightweight, and flexible asymmetric supercapacitor based on cabbage-like ZnCo2O4 and porous VN nanowires electrode materials , 2017 .

[530]  Qianguang Li,et al.  Two dimensional MoS2/CNT hybrid ink for paper-based capacitive energy storage , 2017, Journal of Materials Science: Materials in Electronics.

[531]  Kun Zhang,et al.  Flexible and all-solid-state supercapacitors with long-time stability constructed on PET/Au/polyaniline hybrid electrodes , 2015 .

[532]  Bowen Zhu,et al.  A Mechanically and Electrically Self‐Healing Supercapacitor , 2014, Advanced materials.

[533]  Hui Peng,et al.  A novel and high-effective redox-mediated gel polymer electrolyte for supercapacitor , 2014 .

[534]  K. Liao,et al.  3D Ni-Co selenide nanorod array grown on carbon fiber paper: towards high-performance flexible supercapacitor electrode with new energy storage mechanism , 2017 .

[535]  Li Zhang,et al.  Design of Architectures and Materials in In‐Plane Micro‐supercapacitors: Current Status and Future Challenges , 2017, Advanced materials.

[536]  Chaoyi Yan,et al.  Stretchable energy storage and conversion devices. , 2014, Small.

[537]  G. Shi,et al.  Ultrahigh‐Conductivity Polymer Hydrogels with Arbitrary Structures , 2017, Advanced materials.

[538]  Jean-François Fauvarque,et al.  Electrochemical properties of an alkaline solid polymer electrolyte based on P(ECH-co-EO) , 2000 .

[539]  Hubertus V. M. Hamelers,et al.  Capacitive bioanodes enable renewable energy storage in microbial fuel cells. , 2012, Environmental science & technology.

[540]  Chandrakant D. Lokhande,et al.  Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel , 2015, Scientific Reports.

[541]  Bin Liu,et al.  Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. , 2014, Angewandte Chemie.

[542]  Keryn Lian,et al.  High rate all-solid electrochemical capacitors using proton conducting polymer electrolytes , 2011 .

[543]  Xu Xiao,et al.  WO3−x/MoO3−x Core/Shell Nanowires on Carbon Fabric as an Anode for All‐Solid‐State Asymmetric Supercapacitors , 2012 .

[544]  Daeil Kim,et al.  Air-stable, high-performance, flexible microsupercapacitor with patterned ionogel electrolyte. , 2015, ACS applied materials & interfaces.

[545]  Zhichuan J. Xu,et al.  Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: an excellent structure for high-performance flexible solid-state supercapacitors , 2016, Scientific Reports.

[546]  Qiao Chen,et al.  Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers. , 2013, Physical chemistry chemical physics : PCCP.

[547]  S. Komarneni,et al.  Flexible and internal series-connected supercapacitors with high working voltage using ultralight porous carbon nanofilms , 2017 .

[548]  Ran Liu,et al.  Highly flexible pseudocapacitor based on freestanding heterogeneous MnO2/conductive polymer nanowire arrays. , 2012, Physical chemistry chemical physics : PCCP.

[549]  R. Sun,et al.  Waste to wealth: A sustainable and flexible supercapacitor based on office waste paper electrodes , 2017 .

[550]  Chenchen Ji,et al.  Urchin-like NiCo2O4 hollow microspheres and FeSe2 micro-snowflakes for flexible solid-state asymmetric supercapacitors , 2017 .

[551]  G. Gary Wang,et al.  Flexible solid-state supercapacitors: design, fabrication and applications , 2014 .

[552]  Hongxia Wang,et al.  High performance all-solid-state symmetric supercapacitor based on porous carbon made from a metal-organic framework compound , 2017 .

[553]  Min Han,et al.  Vertically Oriented and Interpenetrating CuSe Nanosheet Films with Open Channels for Flexible All-Solid-State Supercapacitors , 2017, ACS omega.

[554]  Jian Song,et al.  Flexible Fiber-Shaped Supercapacitor Based on Nickel-Cobalt Double Hydroxide and Pen Ink Electrodes on Metallized Carbon Fiber. , 2017, ACS applied materials & interfaces.

[555]  Kai Zhou,et al.  Enhanced performance of layered titanate nanowire-based supercapacitor electrodes by nickel ion exchange. , 2014, ACS applied materials & interfaces.

[556]  Zan Gao,et al.  Flexible all-solid-state hierarchical NiCo2O4/porous graphene paper asymmetric supercapacitors with an exceptional combination of electrochemical properties , 2015 .

[557]  C. Lokhande,et al.  Bendable All‐Solid‐State Asymmetric Supercapacitors based on MnO2 and Fe2O3 Thin Films , 2015 .

[558]  Jun Chen,et al.  Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode. , 2014, Nanoscale.

[559]  Xiaodong Zhuang,et al.  Flexible All‐Solid‐State Supercapacitors with High Volumetric Capacitances Boosted by Solution Processable MXene and Electrochemically Exfoliated Graphene , 2017 .

[560]  D. Dubal,et al.  Ultrahigh energy density supercapacitors through a double hybrid strategy , 2017 .

[561]  C. Zhi,et al.  A Highly Durable, Transferable, and Substrate‐Versatile High‐Performance All‐Polymer Micro‐Supercapacitor with Plug‐and‐Play Function , 2017, Advanced materials.

[562]  Huisheng Peng,et al.  Novel Electric Double‐Layer Capacitor with a Coaxial Fiber Structure , 2013, Advanced materials.

[563]  Jumras Limtrakul,et al.  High-performance supercapacitor of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper , 2013 .

[564]  Zhibin Yang,et al.  Recent advancement of nanostructured carbon for energy applications. , 2015, Chemical reviews.

[565]  Tao Chen,et al.  Flexible and wearable wire-shaped microsupercapacitors based on highly aligned titania and carbon nanotubes , 2016 .

[566]  Xin Cai,et al.  Fiber Supercapacitors Utilizing Pen Ink for Flexible/Wearable Energy Storage , 2012, Advanced materials.

[567]  B. Jang,et al.  Graphene-based supercapacitor with an ultrahigh energy density. , 2010, Nano letters.

[568]  Wen Chen,et al.  Polypyrrole-coated paper for flexible solid-state energy storage , 2013 .

[569]  Qingwen Xue,et al.  Facile synthesis of amorphous FeOOH/MnO 2 composites as screen-printed electrode materials for all-printed solid-state flexible supercapacitors , 2017 .

[570]  Hui Peng,et al.  Toughened redox-active hydrogel as flexible electrolyte and separator applying supercapacitors with superior performance , 2016 .

[571]  Andrzej Lewandowski,et al.  Supercapacitor based on activated carbon and polyethylene oxide–KOH–H2O polymer electrolyte , 2001 .

[572]  C. Sanjeeviraja,et al.  High performance solid-state electric double layer capacitor from redox mediated gel polymer electrolyte and renewable tamarind fruit shell derived porous carbon. , 2013, ACS applied materials & interfaces.

[573]  Chun–Chen Yang,et al.  Study of ionic transport properties of alkaline poly(vinyl) alcohol-based polymer electrolytes , 2005 .

[574]  Qiang Zhang,et al.  Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density , 2012 .

[575]  K. Krishnamoorthy,et al.  Enhanced electrochemical performances of graphene based solid-state flexible cable type supercapacitor using redox mediated polymer gel electrolyte , 2016 .

[576]  Shichao Zhang,et al.  Nitrogen-doped reduced graphene oxide for high-performance flexible all-solid-state micro-supercapacitors , 2014 .

[577]  Qingwen Li,et al.  Ultrastrong, foldable, and highly conductive carbon nanotube film. , 2012, ACS nano.

[578]  Grzegorz Lota,et al.  Novel insight into neutral medium as electrolyte for high-voltage supercapacitors , 2012 .

[579]  Karthik Ramasamy,et al.  Flexible and High Performance Supercapacitors Based on NiCo2O4for Wide Temperature Range Applications , 2015, Scientific Reports.

[580]  S. Xie,et al.  Asymmetric Supercapacitors Based on Graphene/MnO2 Nanospheres and Graphene/MoO3 Nanosheets with High Energy Density , 2013 .

[581]  H. Pang,et al.  1D Co2.18Ni0.82Si2O5(OH)4 architectures assembled by ultrathin nanoflakes for high-performance flexible solid-state asymmetric supercapacitors , 2015 .

[582]  Lei Li,et al.  General Method for Large‐Area Films of Carbon Nanomaterials and Application of a Self‐Assembled Carbon Nanotube Film as a High‐Performance Electrode Material for an All‐Solid‐State Supercapacitor , 2017 .

[583]  Zhenghui Pan,et al.  High Electroactive Material Loading on a Carbon Nanotube@3D Graphene Aerogel for High‐Performance Flexible All‐Solid‐State Asymmetric Supercapacitors , 2017 .

[584]  Yuanyuan Li,et al.  Flexible solid-state symmetric supercapacitors based on MnO2 nanofilms with high rate capability and long cyclability , 2013 .

[585]  Hui Peng,et al.  Superior performance of an active electrolyte enhanced supercapacitor based on a toughened porous network gel polymer , 2017 .

[586]  D. Dubal,et al.  V2O5 encapsulated MWCNTs in 2D surface architecture: Complete solid-state bendable highly stabilized energy efficient supercapacitor device , 2017, Scientific Reports.

[587]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[588]  K. Lian,et al.  Proton conducting H5BW12O40 electrolyte for solid supercapacitors , 2015 .

[589]  Yuanlong Shao,et al.  Fabrication of large-area and high-crystallinity photoreduced graphene oxide films via reconstructed two-dimensional multilayer structures , 2014 .

[590]  L. Dai,et al.  Graphene networks for high-performance flexible and transparent supercapacitors , 2014 .

[591]  Minshen Zhu,et al.  Nanostructured Polypyrrole as a flexible electrode material of supercapacitor , 2016 .

[592]  Guowei Yang,et al.  Free-Standing and Transparent Graphene Membrane of Polyhedron Box-Shaped Basic Building Units Directly Grown Using a NaCl Template for Flexible Transparent and Stretchable Solid-State Supercapacitors. , 2015, Nano letters.

[593]  Di Chen,et al.  Flexible all-solid-state asymmetric supercapacitors with three-dimensional CoSe2/carbon cloth electrodes , 2015 .

[594]  Dae-Hyeong Kim,et al.  Multifunctional wearable devices for diagnosis and therapy of movement disorders. , 2014, Nature nanotechnology.

[595]  Jungwoo Oh,et al.  Three-Dimensional Hierarchically Mesoporous ZnCo2 O4 Nanowires Grown on Graphene/Sponge Foam for High-Performance, Flexible, All-Solid-State Supercapacitors. , 2017, Chemistry.

[596]  Jian Li,et al.  High Performance, Flexible, Solid‐State Supercapacitors Based on a Renewable and Biodegradable Mesoporous Cellulose Membrane , 2017 .

[597]  Jing Xu,et al.  Flexible electronics based on inorganic nanowires. , 2015, Chemical Society reviews.

[598]  Yu Huang,et al.  Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. , 2013, ACS nano.

[599]  Yongfu Tang,et al.  All-solid-state high performance asymmetric supercapacitors based on novel MnS nanocrystal and activated carbon materials , 2016, Scientific Reports.

[600]  J. Fransaer,et al.  On the electrochemical deposition of metal–organic frameworks , 2016 .

[601]  Thierry Brousse,et al.  Hierarchical nanocomposite electrodes based on titanium nitride and carbon nanotubes for micro-supercapacitors , 2014 .

[602]  Mark E Nielsen,et al.  Duty cycling influences current generation in multi-anode environmental microbial fuel cells. , 2012, Environmental science & technology.

[603]  Chen Chen,et al.  Twisting Carbon Nanotube Fibers for Both Wire‐Shaped Micro‐Supercapacitor and Micro‐Battery , 2013, Advanced materials.

[604]  Leqing Fan,et al.  Improvement of the performance for quasi-solid-state supercapacitor by using PVA–KOH–KI polymer gel electrolyte , 2011 .

[605]  Jeffrey W. Long,et al.  To Be or Not To Be Pseudocapacitive , 2015 .

[606]  Majid Beidaghi,et al.  Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). , 2015, ACS nano.

[607]  K. M. Tripathi,et al.  Recent progress in micro-scale energy storage devices and future aspects , 2015 .

[608]  Freestanding, Hydrophilic Nitrogen-Doped Carbon Foams for Highly Compressible All Solid-State Supercapacitors. , 2016, Advanced materials.

[609]  John Wang,et al.  Metal Phosphides and Phosphates-based Electrodes for Electrochemical Supercapacitors. , 2017, Small.

[610]  Woo Y. Lee,et al.  Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide , 2011 .

[611]  Zhitao Zhang,et al.  A three-dimensionally stretchable high performance supercapacitor , 2016 .

[612]  R. Menéndez,et al.  An approach to classification and capacitance expressions in electrochemical capacitors technology. , 2015, Physical chemistry chemical physics : PCCP.

[613]  Tao Cheng,et al.  Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. , 2015, Chemical Society reviews.

[614]  Xiaojuan Hou,et al.  Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes , 2014 .

[615]  Chunxiang Lu,et al.  2D Layered α‐Fe2O3/rGO Flexible Electrode Prepared through Colloidal Electrostatic Self‐Assembly , 2017 .

[616]  H. Bai,et al.  Metallic Fabrics as the Current Collector for High-Performance Graphene-Based Flexible Solid-State Supercapacitor. , 2016, ACS applied materials & interfaces.

[617]  Bruce E Logan,et al.  Energy Capture from Thermolytic Solutions in Microbial Reverse-Electrodialysis Cells , 2012, Science.

[618]  Ashok Kumar,et al.  Investigations on electrochemical supercapacitors using polypyrrole redox electrodes and PMMA based gel electrolytes , 2005 .

[619]  Yi Qi,et al.  Nanotechnology-enabled flexible and biocompatible energy harvesting , 2010 .

[620]  P. Chu,et al.  Multilayered paper-like electrodes composed of alternating stacked mesoporous Mo2N nanobelts and reduced graphene oxide for flexible all-solid-state supercapacitors , 2015 .

[621]  Tao Huang,et al.  Nitrogen-Doped Carbon Coated Stainless Steel Meshes for Flexible Supercapacitors , 2017 .

[622]  Yury Gogotsi,et al.  Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance , 2014, Nature.

[623]  Woong Kim,et al.  1.8-V flexible supercapacitors with asymmetric configuration based on manganese oxide, carbon nanotubes, and a gel electrolyte , 2013 .

[624]  H. Teng,et al.  The Synergistic Effect of Nitrile and Ether Functionalities for Gel Electrolytes Used in Supercapacitors , 2013 .

[625]  Chenyang Xue,et al.  Performance-Boosted Triboelectric Textile for Harvesting Human Motion Energy , 2017 .

[626]  B. C. Kim,et al.  Enhanced supercapacitive performances of functionalized activated carbon in novel gel polymer electrolytes with ionic liquid redox-mediated poly(vinyl alcohol)/phosphoric acid , 2016 .

[627]  Min Seop Kim,et al.  Enhancement of CNT/PET film adhesion by nano-scale modification for flexible all-solid-state supercapacitors , 2015 .

[628]  Mark H. Engelhard,et al.  Rational design of efficient electrode–electrolyte interfaces for solid-state energy storage using ion soft landing , 2016, Nature Communications.

[629]  V. Ruiz,et al.  Hybrid energy storage: high voltage aqueous supercapacitors based on activated carbon–phosphotungstate hybrid materials , 2014 .

[630]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[631]  Bingqing Wei,et al.  A perspective: carbon nanotube macro-films for energy storage , 2013 .

[632]  Balasubramaniam Saravanakumar,et al.  Piezoelectric-driven self-charging supercapacitor power cell. , 2015, ACS nano.

[633]  Jian-Dong Zhang,et al.  High-performance free-standing PEDOT:PSS electrodes for flexible and transparent all-solid-state supercapacitors , 2016 .

[634]  S. Ramesh,et al.  Good prospect of ionic liquid based-poly(vinyl alcohol) polymer electrolytes for supercapacitors with excellent electrical, electrochemical and thermal properties , 2014 .

[635]  Teng Zhai,et al.  LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors. , 2012, ACS nano.

[636]  Jeong Sook Ha,et al.  Flexible, water-proof, wire-type supercapacitors integrated with wire-type UV/NO2 sensors on textiles , 2017 .

[637]  Shaochun Tang,et al.  Flexible Asymmetric Supercapacitors Based on Nitrogen-Doped Graphene Hydrogels with Embedded Nickel Hydroxide Nanoplates. , 2017, ChemSusChem.

[638]  Xuejun Liu,et al.  Preparation of on chip, flexible supercapacitor with high performance based on electrophoretic deposition of reduced graphene oxide/polypyrrole composites , 2015 .

[639]  H. Fan,et al.  Titanium Dioxide@Polyaniline Core-Shell Nanowires as High-Performance and Stable Electrodes for Flexible Solid-State Supercapacitors , 2015 .

[640]  O. Yaghi,et al.  Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels , 1995 .

[641]  G. Han,et al.  Superior performance of highly flexible solid-state supercapacitor based on the ternary composites of graphene oxide supported poly(3,4-ethylenedioxythiophene)-carbon nanotubes , 2016 .

[642]  Yexiang Tong,et al.  ZnO@MoO3 core/shell nanocables: facile electrochemical synthesis and enhanced supercapacitor performances , 2011 .

[643]  Doron Aurbach,et al.  Carbon-based composite materials for supercapacitor electrodes: a review , 2017 .

[644]  Wenjie Mai,et al.  Electrochromic energy storage devices , 2016 .

[645]  Weiwei Cai,et al.  Smart electrochromic supercapacitors based on highly stable transparent conductive graphene/CuS network electrodes , 2017 .

[646]  Q. Tian,et al.  Solid asymmetric electrochemical capacitors using proton-conducting polymer electrolytes , 2010 .

[647]  Alexander C. Forse,et al.  In Situ NMR Spectroscopy of Supercapacitors: Insight into the Charge Storage Mechanism , 2013, Journal of the American Chemical Society.

[648]  Dean M. DeLongchamp,et al.  Layer-by-layer assembly of PEDOT/polyaniline electrochromic devices , 2001 .

[649]  Shengyuan Yang,et al.  Hierarchical MnO 2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors , 2016 .

[650]  Elzbieta Frackowiak,et al.  Redox-active electrolyte for supercapacitor application. , 2014, Faraday discussions.

[651]  Mingfei Shao,et al.  Mesoporous graphene-layered double hydroxides free-standing films for enhanced flexible supercapacitors , 2016 .

[652]  X. Bao,et al.  Stacked‐Layer Heterostructure Films of 2D Thiophene Nanosheets and Graphene for High‐Rate All‐Solid‐State Pseudocapacitors with Enhanced Volumetric Capacitance , 2017, Advanced materials.

[653]  Wen Zhou,et al.  α-Fe2O3@PANI Core-Shell Nanowire Arrays as Negative Electrodes for Asymmetric Supercapacitors. , 2015, ACS applied materials & interfaces.

[654]  Xue-Feng Lu,et al.  High-performance supercapacitors based on MnO2 tube-in-tube arrays , 2015 .

[655]  Xiaodong Zhuang,et al.  Dual‐Template Synthesis of 2D Mesoporous Polypyrrole Nanosheets with Controlled Pore Size , 2016, Advanced materials.

[656]  Yihua Gao,et al.  Hierarchical nanostructures of polypyrrole@MnO2 composite electrodes for high performance solid-state asymmetric supercapacitors. , 2014, Nanoscale.

[657]  G. Guan,et al.  Binder‐Free Electrodes of CoAl Layered Double Hydroxide on Carbon Fibers for All‐Solid‐State Flexible Yarn Supercapacitors , 2016 .

[658]  Zhigang Zhao,et al.  Synergy of W18O49 and polyaniline for smart supercapacitor electrode integrated with energy level indicating functionality. , 2014, Nano letters.

[659]  Xue-Feng Lu,et al.  Asymmetric Paper Supercapacitor Based on Amorphous Porous Mn3O4 Negative Electrode and Ni(OH)2 Positive Electrode: A Novel and High-Performance Flexible Electrochemical Energy Storage Device. , 2015, ACS applied materials & interfaces.

[660]  Roya Maboudian,et al.  High-performance all solid-state micro-supercapacitor based on patterned photoresist-derived porous carbon electrodes and an ionogel electrolyte , 2014 .

[661]  Ying-Sheng Huang,et al.  Cycle stability of the electrochemical capacitors patterned with vertically aligned carbon nanotubes in an LiPF6-based electrolyte. , 2013, Nanoscale.

[662]  C. Das,et al.  Solid State Flexible Asymmetric Supercapacitor Based on Carbon Fiber Supported Hierarchical Co(OH)xCO3 and Ni(OH)2. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[663]  Jimin Maeng,et al.  Wafer-scale integrated micro-supercapacitors on an ultrathin and highly flexible biomedical platform , 2015, Biomedical microdevices.

[664]  Chao Gao,et al.  Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics , 2014, Nature Communications.

[665]  Jing Peng,et al.  A Flexible Ionic Liquid Gelled PVA‐Li2SO4 Polymer Electrolyte for Semi‐Solid‐State Supercapacitors , 2015 .

[666]  N. Koratkar,et al.  Shape memory fiber supercapacitors , 2015 .

[667]  Jeong Sook Ha,et al.  Fabrication of flexible micro-supercapacitor array with patterned graphene foam/MWNT-COOH/MnOx electrodes and its application , 2015 .

[668]  Zheye Zhang,et al.  Advanced solid-state asymmetric supercapacitors based on 3D graphene/MnO2 and graphene/polypyrrole hybrid architectures , 2015 .

[669]  Zhenghui Pan,et al.  Ultra-endurance flexible all-solid-state asymmetric supercapacitors based on three-dimensionally coated MnOx nanosheets on nanoporous current collectors , 2016 .

[670]  Rudolf Holze,et al.  Intrinsically conducting polymers in electrochemical energy technology: Trends and progress , 2014 .

[671]  Yong Ding,et al.  Worm-like amorphous MnO2 nanowires grown on textiles for high-performance flexible supercapacitors , 2014 .

[672]  Hongtao Liu,et al.  Graphene‐based materials for flexible electrochemical energy storage , 2015 .

[673]  Minshen Zhu,et al.  Highly Integrated Supercapacitor-Sensor Systems via Material and Geometry Design. , 2016, Small.

[674]  Xuemei Sun,et al.  Stretchable, Wearable Dye‐Sensitized Solar Cells , 2014, Advanced materials.

[675]  Teng Zhai,et al.  H‐TiO2@MnO2//H‐TiO2@C Core–Shell Nanowires for High Performance and Flexible Asymmetric Supercapacitors , 2013, Advanced materials.