Algebraic Signal Processing Theory

This paper presents an algebraic theory of linear signal processing. At the core of algebraic signal processing is the concept of a linear signal model defined as a triple (A, M, phi), where familiar concepts like the filter space and the signal space are cast as an algebra A and a module M, respectively, and phi generalizes the concept of the z-transform to bijective linear mappings from a vector space of, e.g., signal samples, into the module M. A signal model provides the structure for a particular linear signal processing application, such as infinite and finite discrete time, or infinite or finite discrete space, or the various forms of multidimensional linear signal processing. As soon as a signal model is chosen, basic ingredients follow, including the associated notions of filtering, spectrum, and Fourier transform. The shift operator is a key concept in the algebraic theory: it is the generator of the algebra of filters A. Once the shift is chosen, a well-defined methodology leads to the associated signal model. Different shifts correspond to infinite and finite time models with associated infinite and finite z-transforms, and to infinite and finite space models with associated infinite and finite C-transforms (that we introduce). In particular, we show that the 16 discrete cosine and sine transforms are Fourier transforms for the finite space models. Other definitions of the shift naturally lead to new signal models and to new transforms as associated Fourier transforms in one and higher dimensions, separable and non-separable. We explain in algebraic terms shift-invariance (the algebra of filters A is commutative), the role of boundary conditions and signal extensions, the connections between linear transforms and linear finite Gauss-Markov fields, and several other concepts and connections.

[1]  Don H. Johnson,et al.  Gauss and the history of the fast Fourier transform , 1984, IEEE ASSP Magazine.

[2]  Zhongde Wang Harmonic analysis with a real frequency function. III. Data sequence , 1981 .

[3]  D. Rockmore,et al.  Generalized FFT's- A survey of some recent results , 1996, Groups and Computation.

[4]  Antonio M. Peinado,et al.  Diagonalizing properties of the discrete cosine transforms , 1995, IEEE Trans. Signal Process..

[5]  Sim Heng Ong,et al.  Image Analysis by Tchebichef Moments , 2001, IEEE Trans. Image Process..

[6]  Jean-Bernard Martens,et al.  The Hermite transform-theory , 1990, IEEE Trans. Acoust. Speech Signal Process..

[7]  Thomas Beth,et al.  On the Computational Complexity of the General Discrete Fourier Transform , 1987, Theor. Comput. Sci..

[8]  José M. F. Moura,et al.  DCT/DST and Gauss-Markov fields: conditions for equivalence , 1998, IEEE Trans. Signal Process..

[9]  Maurice F. Aburdene,et al.  Unification of Legendre, Laguerre, Hermite, and binomial discrete transforms using Pascal's matrix , 1994, Multidimens. Syst. Signal Process..

[10]  José M. F. Moura,et al.  The Algebraic Approach to the Discrete Cosine and Sine Transforms and Their Fast Algorithms , 2003, SIAM J. Comput..

[11]  Martin Vetterli,et al.  Basefield transforms with the convolution property , 1994, Proc. IEEE.

[12]  Markus Püschel,et al.  Automatic generation of fast discrete signal transforms , 2001, IEEE Trans. Signal Process..

[13]  D. Healy,et al.  Computing Fourier Transforms and Convolutions on the 2-Sphere , 1994 .

[14]  Zhong-De Wang Harmonic analysis with a real frequency function—I. aperiodic case , 1981 .

[15]  변재웅 Efficient computation of the fourier transform on the finite groups , 2000 .

[16]  W. Kester Fast Fourier Transforms , 2003 .

[17]  Markus Püschel,et al.  Symmetry-based matrix factorization , 2004, J. Symb. Comput..

[18]  H. Nussbaumer,et al.  Fast computation of discrete Fourier transforms using polynomial transforms , 1979 .

[19]  V. Pan Structured Matrices and Polynomials , 2001 .

[20]  Daniel N. Rockmore,et al.  Double coset decompositions and computational harmonic analysis on groups , 2000 .

[21]  I. W. Sandberg A representation theorem for linear systems , 1998 .

[22]  S. Winograd On computing the Discrete Fourier Transform. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[23]  M. Liebeck,et al.  Representations and Characters of Groups , 1995 .

[24]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[25]  J. Dicapua Chebyshev Polynomials , 2019, Fibonacci and Lucas Numbers With Applications.

[26]  S. Mitter,et al.  Controllability, observability, pole allocation, and state reconstruction , 1971 .

[27]  P. Diaconis A Generalization of Spectral Analysis with Application to Ranked Data , 1989 .

[28]  R. E. Edwards,et al.  Fourier series : a modern introduction , 1982 .

[29]  公庄 庸三 Basic Algebra = 代数学入門 , 2002 .

[30]  Markus Püschel,et al.  Cooley-Tukey FFT like algorithms for the DCT , 2003, ICASSP.

[31]  H. L. Resnikoff Wavelet analysis , 1998 .

[32]  T. Kailath,et al.  Displacement structure approach to discrete-trigonometric-transform based preconditioners of G.Strang type and of T.Chan type , 1996 .

[33]  Richard M. Karp Complexity of Computation , 1974 .

[34]  Paul A. Wintz,et al.  Calculation of Fourier transforms on finite Abelian groups (Corresp.) , 1970, IEEE Trans. Inf. Theory.

[35]  Dennis M. Healy,et al.  A wreath product group approach to signal and image processing .I. Multiresolution analysis , 2000, IEEE Trans. Signal Process..

[36]  Giridhar D. Mandyam,et al.  The discrete Laguerre transform: derivation and applications , 1996, IEEE Trans. Signal Process..

[37]  Gabriele Steidl,et al.  Fast algorithms for discrete polynomial transforms , 1998, Math. Comput..

[38]  Yechiam Yemini,et al.  Asymptotic Properties of Discrete Unitary Transforms , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  B. Hunt,et al.  The discreteW transform , 1985 .

[40]  Vladimir Britanak,et al.  The fast generalized discrete Fourier transforms: A unified approach to the discrete sinusoidal transforms computation , 1999, Signal Process..

[41]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[42]  T. Chihara,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[43]  P. Fuhrmann Algebraic system theory: an analyst's point of view , 1976 .

[44]  Stephen A. Martucci,et al.  Symmetric convolution and the discrete sine and cosine transforms , 1993, IEEE Trans. Signal Process..

[45]  R. Hartley A More Symmetrical Fourier Analysis Applied to Transmission Problems , 1942, Proceedings of the IRE.

[46]  T.W. Cairns,et al.  Finite Abelian Groups , 2018, Algebra.

[47]  M. Anshelevich,et al.  Introduction to orthogonal polynomials , 2003 .

[48]  M. Puschel,et al.  The discrete triangle transform , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[49]  V. I. Romanovsky Discrete Markov Chains , 1970 .

[50]  Mark G. Karpovsky,et al.  Fast Fourier Transforms on Finite Non-Abelian Groups , 1977, IEEE Transactions on Computers.

[51]  Ali N. Akansu,et al.  A new orthogonal transform for signal coding , 1988, IEEE Trans. Acoust. Speech Signal Process..

[52]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[53]  P. Diaconis Group representations in probability and statistics , 1988 .

[54]  W. Wonham,et al.  Topics in mathematical system theory , 1972, IEEE Transactions on Automatic Control.

[55]  R. Bracewell Discrete Hartley transform , 1983 .

[56]  Torsten Minkwitz Algorithmensynthese für lineare Systeme mit Symmetrie , 1993 .

[57]  Robert M. Gray,et al.  Probability, Random Processes, And Ergodic Properties , 1987 .

[58]  R. Tolimieri,et al.  Algorithms for Discrete Fourier Transform and Convolution , 1989 .

[59]  M. Puschel,et al.  Fourier transform for the spatial quincunx lattice , 2005, IEEE International Conference on Image Processing 2005.

[60]  M. Burrow Representation Theory of Finite Groups , 1965 .

[61]  Dennis M. Healy,et al.  Fast Discrete Polynomial Transforms with Applications to Data Analysis for Distance Transitive Graphs , 1997, SIAM J. Comput..

[62]  Zhong-De Wang A fast algorithm for the discrete sine transform implemented by the fast cosine transform , 1982 .

[63]  S. Winograd Arithmetic complexity of computations , 1980 .

[64]  M. Heideman Multiplicative Complexity of Discrete Fourier Transform , 1988 .

[65]  G. Steidl,et al.  A polynomial approach to fast algorithms for discrete Fourier-cosine and Fourier-sine transforms , 1991 .

[66]  G. Alexits,et al.  Convergence Problems of Orthogonal Series. , 1961 .

[67]  Babak Hassibi,et al.  Representation theory for high-rate multiple-antenna code design , 2001, IEEE Trans. Inf. Theory.

[68]  Chao Lu,et al.  Mathematics of Multidimensional Fourier Transform Algorithms , 1993 .

[69]  Paul S. Wang,et al.  Factorization of Chebyshev Polynomials , 1998 .

[70]  Michael Clausen,et al.  Fast Generalized Fourier Transforms , 1989, Theor. Comput. Sci..

[71]  S. Winograd,et al.  Abelian semi-simple algebras and algorithms for the Discrete Fourier Transform , 1984 .

[72]  Nikhil Balram,et al.  Recursive structure of noncausal Gauss-Markov random fields , 1992, IEEE Trans. Inf. Theory.

[73]  A. Morse,et al.  Decoupling and Pole Assignment in Linear Multivariable Systems: A Geometric Approach , 1970 .

[74]  Markus Püschel,et al.  Decomposing Monomial Representations of Solvable Groups , 2002, J. Symb. Comput..

[75]  G. Basile,et al.  Controlled and conditioned invariant subspaces in linear system theory , 1969 .

[76]  Thomas Kailath,et al.  Displacement-structure approach to polynomial Vandermonde and related matrices , 1997 .

[77]  G. Bongiovanni,et al.  One-dimensional and two-dimensional generalised discrete fourier transforms , 1976 .

[78]  Peter J. Nicholson,et al.  Algebraic Theory of Finite Fourier Transforms , 1971, Journal of computer and system sciences (Print).

[79]  P. Fuhrmann A Polynomial Approach to Linear Algebra , 1996 .

[80]  D. Rockmore Fast Fourier analysis for abelian group extensions , 1990 .