Degenerate Fokker–Planck equations: Bismut formula, gradient estimate and Harnack inequality

[1]  Feng-Yu Wang Coupling and Applications , 2010, 1012.5687.

[2]  Jiang-Lun Wu,et al.  Log-Harnack inequality for stochastic Burgers equations and applications , 2010, 1009.5948.

[3]  Feng-Yu Wang,et al.  Derivative Formula and Applications for Hyperdissipative Stochastic Navier-Stokes/Burgers Equations , 2010, 1009.1464.

[4]  Xicheng Zhang,et al.  Stochastic flows and Bismut formulas for stochastic Hamiltonian systems , 2010 .

[5]  Tusheng Zhang White Noise Driven SPDEs with Reflection: Strong Feller Properties and Harnack Inequalities , 2010 .

[6]  Feng-Yu Wang,et al.  Log-Harnack Inequality for Stochastic Differential Equations in Hilbert Spaces and its Consequences , 2009, 0911.0290.

[7]  M. Renesse,et al.  Harnack Inequality for Functional SDEs with Bounded Memory , 2009, 0910.4536.

[8]  Anton Thalmaier,et al.  Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds☆ , 2009 .

[9]  Shun-Xiang Ouyang,et al.  Harnack Inequalities and Applications for Multivalued Stochastic Evolution Equations , 2009, 0908.3630.

[10]  Feng-Yu Wang Harnack inequalities on manifolds with boundary and applications , 2009, 0908.2888.

[11]  M. Röckner,et al.  Harnack Inequalities and Applications for Ornstein–Uhlenbeck Semigroups with Jump , 2009, 0908.2889.

[12]  A. Guillin,et al.  Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation , 2009, 0906.1417.

[13]  G. Prato,et al.  Singular stochastic equations on Hilbert spaces: Harnack inequalities for their transition semigroups , 2008, 0811.2061.

[14]  Wei Liu,et al.  Harnack inequality and strong Feller property for stochastic fast-diffusion equations☆ , 2007, 0712.3136.

[15]  Feng-Yu Wang Harnack inequality and applications for stochastic generalized porous media equations , 2007, 0708.1671.

[16]  D. Bakry,et al.  Rate of convergence for ergodic continuous Markov processes : Lyapunov versus Poincaré , 2007, math/0703355.

[17]  C. Villani,et al.  Hypocoercivity , 2006, math/0609050.

[18]  R. Douc,et al.  Subgeometric rates of convergence of f-ergodic strong Markov processes , 2006, math/0605791.

[19]  Anton Thalmaier,et al.  Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below , 2006 .

[20]  Liming Wu Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems , 2001 .

[21]  C. Villani,et al.  Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .

[22]  Feng-Yu Wang,et al.  Logarithmic Sobolev inequalities on noncompact Riemannian manifolds , 1997 .

[23]  K. Elworthy,et al.  Formulae for the Derivatives of Heat Semigroups , 1994, 1911.10971.

[24]  Anton Thalmaier,et al.  Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds, Stochastic Process , 2008 .

[25]  Hiroshi Kawabi The Parabolic Harnack Inequality for the Time Dependent Ginzburg–Landau Type SPDE and its Application , 2005 .

[26]  Anton Thalmaier,et al.  Bismut type differentiation of semigroups. , 1999 .

[27]  J. Bismut Large Deviations and the Malliavin Calculus , 1984 .