Parameter Estimation and Statistical Methods

Abstract Parameter estimation procedures are very important in the chemical engineering field for development of mathematical models, since design, optimization, and advanced control of chemical processes usually rely on mathematical models, which in turn depend on parameter values (and respective uncertainties) obtained with help of available experimental data. For this reason, the parameter estimation problem is introduced here and discussed in terms of its three fundamental steps: the definition of the objective function, the minimization of the objective function, and the statistical analysis of the obtained results.

[1]  Marcio Schwaab,et al.  Optimum reference temperature for reparameterization of the Arrhenius equation. Part 2: Problems involving multiple reparameterizations , 2008 .

[2]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[3]  J. A. González-Marcos,et al.  SEQUENTIAL DESIGN OF EXPERIMENTS FOR OPTIMAL MODEL DISCRIMINATION AND PARAMETER ESTIMATION IN ISOPROPANOL DEHYDRATION , 1991 .

[4]  José Carlos Pinto,et al.  Sequential experimental design for parameter estimation : a different approach , 1990 .

[5]  Rolf Sundberg,et al.  Statistical aspects on fitting the Arrhenius equation , 1998 .

[6]  S. K. Katti,et al.  Hazards of linearization of Langmuir's model , 1990 .

[7]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[8]  E. Lima,et al.  Data Reconciliation and Control in Styrene-Butadiene Emulsion Polymerizations , 2011 .

[9]  N. Draper,et al.  Applied Regression Analysis , 1967 .

[10]  J. Pinto,et al.  Modelling the effects of reaction temperature and flow rate on the conversion of ethanol to 1,3-butadiene , 2017 .

[11]  Michael G. Epitropakis,et al.  Evolving cognitive and social experience in Particle Swarm Optimization through Differential Evolution: A hybrid approach , 2012, Inf. Sci..

[12]  David Mautner Himmelblau,et al.  Process analysis by statistical methods , 1970 .

[13]  Marcos L. Corazza,et al.  A comparison among stochastic optimization algorithms for parameter estimation of biochemical kinetic models , 2013, Appl. Soft Comput..

[14]  J. Pinto,et al.  Microkinetic analysis of ethanol to 1,3-butadiene reactions over MgO-SiO2 catalysts based on characterization of experimental fluctuations , 2017 .

[15]  Amaro G. Barreto,et al.  A new approach for sequential experimental design for model discrimination , 2006 .

[16]  Douglas M. Bates,et al.  Nonlinear Regression Analysis and Its Applications , 1988 .

[17]  Diego Martinez Prata,et al.  Nonlinear dynamic data reconciliation and parameter estimation through particle swarm optimization: Application for an industrial polypropylene reactor , 2009 .

[18]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[19]  W. Näther Optimum experimental designs , 1994 .

[20]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[21]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[22]  S. Sivanesan,et al.  Prediction of optimum sorption isotherm: comparison of linear and non-linear method. , 2005, Journal of hazardous materials.

[23]  A. Krause,et al.  Kinetic analysis of temperature-programmed desorption , 2004 .

[24]  G. Froment,et al.  Chemical Reactor Analysis and Design , 1979 .

[25]  N. Kalogerakis,et al.  Applied parameter estimation for chemical engineers , 2000 .

[26]  J. S. Hunter,et al.  Statistics for experimenters : an introduction to design, data analysis, and model building , 1979 .

[27]  H. Knözinger,et al.  Kinetics of the bimolecular ether formation from alcohols over alumina , 1973 .

[28]  Diego Martinez Prata,et al.  Simultaneous robust data reconciliation and gross error detection through particle swarm optimization for an industrial polypropylene reactor , 2010 .

[29]  E. Biscaia,et al.  Nonlinear parameter estimation through particle swarm optimization , 2008 .

[30]  J. Pinto,et al.  Analysis of experimental errors in catalytic tests for production of synthesis gas , 2003 .

[31]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[32]  Determination of Arrhenius constants by linear and nonlinear fitting , 1992 .

[33]  J. Pinto,et al.  The influence of covariances during laboratory evaluation of FCC catalysts , 2001 .

[34]  Amanda L. T. Brandão,et al.  Modeling and parameter estimation of step‐growth polymerization of poly(ethylene‐2,5‐furandicarboxylate) , 2018 .

[35]  D. Wolf,et al.  Estimating rate constants of heterogeneous catalytic reactions without supposition of rate determining surface steps — an application of a genetic algorithm , 1997 .

[36]  Lubomír Kubáček,et al.  Statistical properties of linearization of the Arrhenius equation via the logarithmic transformation , 1997 .

[37]  José Carlos Pinto,et al.  Sequential experimental design for model discrimination: Taking into account the posterior covariance matrix of differences between model predictions , 2008 .

[38]  J. Pinto,et al.  Statistical Analysis of Linear and Non-Linear Regression for the Estimation of Adsorption Isotherm Parameters , 2013 .

[39]  J. Pinto,et al.  Experimental errors in kinetic tests and its influence on the precision of estimated parameters. Part I—Analysis of first-order reactions , 2009 .

[40]  Irwin Guttman,et al.  Confidence intervals versus regions , 1995 .

[41]  G. Froment,et al.  A hybrid genetic algorithm for the estimation of parameters in detailed kinetic models , 1998 .

[42]  J. Pinto,et al.  Design of experiments for discrimination of rival models based on the expected number of eliminated models , 2012 .

[43]  José Luiz Fontes Monteiro,et al.  Sequential experimental design for parameter estimation: analysis of relative deviations , 1991 .

[44]  D. Himmelblau,et al.  Optimization of Chemical Processes , 1987 .

[45]  Erwie Zahara,et al.  A hybrid genetic algorithm and particle swarm optimization for multimodal functions , 2008, Appl. Soft Comput..

[46]  José Carlos Pinto,et al.  Experimental design for the joint model discrimination and precise parameter estimation through information measures , 2011 .

[47]  The influence of experimental errors during laboratory evaluation of FCC catalysts , 1999 .

[48]  Shu-Kai S. Fan,et al.  A hybrid simplex search and particle swarm optimization for unconstrained optimization , 2007, Eur. J. Oper. Res..

[49]  M. Senthil Arumugam,et al.  On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems , 2008, Appl. Soft Comput..

[50]  Ariane Leites Larentis,et al.  Modeling and optimization of the combined carbon dioxide reforming and partial oxidation of natural gas , 2001 .

[51]  Marcio Schwaab,et al.  Optimum reference temperature for reparameterization of the Arrhenius equation. Part 1 : Problems involving one kinetic constant , 2007 .

[52]  Robert B. Schnabel,et al.  Computational Experience With Confidence Regions and Confidence Intervals for Nonlinear Least Squares , 1986 .

[53]  Yonathan Bard,et al.  Comparison of Gradient Methods for the Solution of Nonlinear Parameter Estimation Problems , 1970 .

[54]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..