Tropical optimization problems

We consider optimization problems that are formulated and solved in the framework of tropical mathematics. The problems consist in minimizing or maximizing functionals defined on vectors of finite-dimensional semimodules over idempotent semifields, and may involve constraints in the form of linear equations and inequalities. The objective function can be either a linear function or nonlinear function calculated by means of multiplicative conjugate transposition of vectors. We start with an overview of known tropical optimization problems and solution methods. Then, we formulate certain new problems and present direct solutions to the problems in a closed compact vector form suitable for further analysis and applications. For many problems, the results obtained are complete solutions.

[1]  Daniel A. Spielman Graphs and networks , 2007 .

[2]  Nikolai K. Krivulin,et al.  A tropical extremal problem with nonlinear objective function and linear inequality constraints , 2012, ArXiv.

[3]  V. Kolokoltsov,et al.  Idempotent Analysis and Its Applications , 1997 .

[4]  Geert Jan Olsder,et al.  Synchronization and Linearity: An Algebra for Discrete Event Systems , 1994 .

[5]  Alexander E. Guterman,et al.  Tropical Polyhedra are Equivalent to mean Payoff Games , 2009, Int. J. Algebra Comput..

[6]  Michel Minoux,et al.  Graphs, dioids and semirings : new models and algorithms , 2008 .

[7]  B. Schutter "Max-Algebraic System Theory for Discrete Event Systems" , 1996 .

[8]  Sergei Sergeev,et al.  The analytic hierarchy process, max algebra and multi-objective optimisation , 2013 .

[9]  B. Ciffler Scheduling general production systems using schedule algebra , 1963 .

[10]  Peter Butkovič On Properties of Solution Sets of Extremal Linear Programs , 1984 .

[11]  Karel Zimmermann,et al.  Disjunctive optimization, max-separable problems and extremal algebras , 2003, Theor. Comput. Sci..

[12]  Willi Hock,et al.  Lecture Notes in Economics and Mathematical Systems , 1981 .

[13]  Eigenvalues and Eigenvectors of Matrices in Idempotent Algebra , 2006 .

[14]  Gernot M. Engel,et al.  Diagonal similarity and equivalence for matrices over groups with 0 , 1975 .

[15]  Raymond A. Cuninghame-Green,et al.  Projections in minimax algebra , 1976, Math. Program..

[16]  Solution of generalized linear vector equations in idempotent algebra , 2006 .

[17]  Nikolai Krivulin,et al.  A multidimensional tropical optimization problem with a non-linear objective function and linear constraints , 2013, ArXiv.

[18]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[19]  K. Zimmermann Optimization problems with unimodal functions in max-separabal constraints , 1992 .

[20]  J. Golan Semirings and Affine Equations over Them: Theory and Applications , 2003 .

[21]  Peter Butkovic,et al.  The equation A⊗x=B⊗y over (max, +) , 2003, Theor. Comput. Sci..

[23]  A. J. Hoffman On abstract dual linear programs , 1963 .

[24]  I. V. Romanovskil Optimization of stationary control of a discrete deterministic process , 1967 .

[25]  Nikolai Krivulin,et al.  A constrained tropical optimization problem: complete solution and application example , 2013, ArXiv.

[26]  William M. McEneaney,et al.  Max-plus methods for nonlinear control and estimation , 2005 .

[27]  Some optimization problems with extremal operations , 1984 .

[28]  Nikolai Krivulin,et al.  Direct solutions to tropical optimization problems with nonlinear objective functions and boundary constraints , 2013, ArXiv.

[29]  Nikolai Krivulin,et al.  A Maximization Problem in Tropical Mathematics: A Complete Solution and Application Examples , 2013, Informatica.

[30]  R. Bellman On a Quasi-Linear Equation , 1956, Canadian Journal of Mathematics.

[31]  R. Bellman,et al.  On a new functional transform in analysis: The maximum transform , 1961 .

[32]  Nikolai Krivulin,et al.  Explicit solution of a tropical optimization problem with application to project scheduling , 2013, ArXiv.

[33]  N. Krivulin A new algebraic solution to multidimensional minimax location problems with Chebyshev distance , 2012, 1210.4770.

[34]  Bart De Schutter,et al.  Model predictive control for max-plus-linear discrete event systems , 2001, Autom..

[35]  Geert Jan Olsder,et al.  Max Plus at Work-Modelling and Analysis of Synchronized Systems , 2006 .

[36]  Nikolai K. Krivulin,et al.  Algebraic solutions to multidimensional minimax location problems with Chebyshev distance , 2011, ArXiv.

[37]  Peter Butkovič,et al.  Introduction to max-linear programming , 2009 .

[38]  Martin Gavalec,et al.  Duality for max-separable problems , 2012, Central Eur. J. Oper. Res..

[39]  Ricardo D. Katz,et al.  Tropical linear-fractional programming and parametric mean payoff games , 2011, J. Symb. Comput..

[40]  Timothy G. Griffin,et al.  Relational and algebraic methods in computer science , 2015, J. Log. Algebraic Methods Program..

[41]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[42]  G. Litvinov Maslov dequantization, idempotent and tropical mathematics: A brief introduction , 2005, math/0507014.

[43]  U. Zimmermann Linear and combinatorial optimization in ordered algebraic structures , 1981 .

[44]  Nikolai Krivulin,et al.  Extremal properties of tropical eigenvalues and solutions to tropical optimization problems , 2013, ArXiv.

[45]  Nikolai Krivulin,et al.  Complete Solution of a Constrained Tropical Optimization Problem with Application to Location Analysis , 2013, RAMiCS.

[46]  Evaluation of bounds on the mean rate of growth of the state vector of a linear dynamical stochastic , 2005 .

[47]  S. Gaubert Resource optimization and (min, +) spectral theory , 1995, IEEE Trans. Autom. Control..

[48]  Ludwig Elsner,et al.  Max-algebra and pairwise comparison matrices , 2004 .

[49]  N. Krivulin A complete closed-form solution to a tropical extremal problem , 2012, 1210.3658.

[50]  K. Tam Optimizing and approximating eigenvectors in max-algebra , 2010 .

[51]  R. A. Cuninghame-Green,et al.  Describing Industrial Processes with Interference and Approximating Their Steady-State Behaviour , 1962 .

[52]  S. N. N. Pandit,et al.  A New Matrix Calculus , 1961 .

[53]  R. Cuninghame-Green Minimax algebra and applications , 1991 .

[54]  K. Zimmermann,et al.  On Max-Separable Optimization Problems , 1984 .

[55]  P. Butkovic Max-linear Systems: Theory and Algorithms , 2010 .

[56]  R. Bellman,et al.  Mathematical Programming and the Maximum Transform , 1962 .

[57]  K. G. Farlow,et al.  Max-Plus Algebra , 2009 .

[58]  Vassili N. Kolokoltsov,et al.  Idempotent Structures in Optimization , 2001 .