Calcium-dependent homoassociation of E-cadherin by NMR spectroscopy: changes in mobility, conformation and mapping of contact regions.

[1]  G. Lipari Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules , 1982 .

[2]  A. Szabó,et al.  Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity , 1982 .

[3]  M. Takeichi Cadherins: a molecular family essential for selective cell-cell adhesion and animal morphogenesis , 1987 .

[4]  Akinao Nose,et al.  Expressed recombinant cadherins mediate cell sorting in model systems , 1988, Cell.

[5]  L. Kay,et al.  Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. , 1989, Biochemistry.

[6]  Akinao Nose,et al.  Localization of specificity determining sites in cadherin cell adhesion molecules , 1990, Cell.

[7]  R. Kemler,et al.  Correct proteolytic cleavage is required for the cell adhesive function of uvomorulin , 1990, The Journal of cell biology.

[8]  S. Grzesiek,et al.  The Importance of Not Saturating H2o in Protein NMR : application to Sensitivity Enhancement and Noe Measurements , 1993 .

[9]  G. Wagner,et al.  Cell surface adhesion receptors. , 1994, Current opinion in structural biology.

[10]  J. Engel,et al.  Conformational changes of the recombinant extracellular domain of E-cadherin upon calcium binding. , 1994, European journal of biochemistry.

[11]  A. Palmer,et al.  Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. , 1995, Journal of molecular biology.

[12]  A. Bax,et al.  Rotational diffusion anisotropy of human ubiquitin from 15N NMR relaxation , 1995 .

[13]  Peter D. Kwong,et al.  Structural basis of cell-cell adhesion by cadherins , 1995, Nature.

[14]  M. Ikura,et al.  Solution structure of the epithelial cadherin domain responsible for selective cell adhesion , 1995, Science.

[15]  M. Takeichi Morphogenetic roles of classic cadherins. , 1995, Current opinion in cell biology.

[16]  B. Gumbiner,et al.  Lateral dimerization is required for the homophilic binding activity of C-cadherin , 1996, The Journal of cell biology.

[17]  M. Ikura,et al.  1H, 15N and 13C resonance assignments and monomeric structure of the amino-terminal extracellular domain of epithelial cadherin , 1996, Journal of biomolecular NMR.

[18]  S. Grzesiek,et al.  The solution structure of HIV-1 Nef reveals an unexpected fold and permits delineation of the binding surface for the SH3 domain of Hck tyrosine protein kinase , 1996, Nature Structural Biology.

[19]  M. Ikura,et al.  Structural basis of calcium-induced E-cadherin rigidification and dimerization , 1996, Nature.

[20]  B. Gumbiner,et al.  Cell Adhesion: The Molecular Basis of Tissue Architecture and Morphogenesis , 1996, Cell.

[21]  J. Engel,et al.  Homophilic adhesion of E‐cadherin occurs by a co‐operative two‐step interaction of N‐terminal domains. , 1996, The EMBO journal.

[22]  C Chothia,et al.  The molecular structure of cell adhesion molecules. , 1997, Annual review of biochemistry.

[23]  M. Ikura,et al.  Lateral self‐assembly of E‐cadherin directed by cooperative calcium binding , 1997, FEBS letters.

[24]  A. Bax,et al.  Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. , 1997, Science.

[25]  A. Lustig,et al.  Calcium binding and homoassociation of E-cadherin domains. , 1997, Biochemistry.

[26]  A. Bax,et al.  Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. , 1998, Journal of magnetic resonance.

[27]  Ad Bax,et al.  Validation of Protein Structure from Anisotropic Carbonyl Chemical Shifts in a Dilute Liquid Crystalline Phase , 1998 .

[28]  Wayne A. Hendrickson,et al.  Structure-Function Analysis of Cell Adhesion by Neural (N-) Cadherin , 1998, Neuron.

[29]  L. Mueller,et al.  Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions , 1998, Nature Structural Biology.

[30]  O. Pertz,et al.  A new crystal structure, Ca2+ dependence and mutational analysis reveal molecular details of E‐cadherin homoassociation , 1999, The EMBO journal.

[31]  O. Pertz,et al.  Homophilic adhesion by cadherins. , 1999, Current opinion in structural biology.

[32]  S. Grzesiek,et al.  Purple membrane induced alignment of biological macromolecules in the magnetic field , 1999 .

[33]  S. Grzesiek,et al.  Direct Observation of Hydrogen Bonds in Proteins by Interresidue 3hJNC' Scalar Couplings , 1999 .

[34]  S. Hirohashi,et al.  E-cadherin functions as a cis-dimer at the cell–cell adhesive interface in vivo , 1999, Nature Structural Biology.

[35]  D. Leckband,et al.  Direct molecular force measurements of multiple adhesive interactions between cadherin ectodomains. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[36]  M. Ikura,et al.  Structural view of cadherin-mediated cell-cell adhesion , 1999, Cellular and Molecular Life Sciences CMLS.

[37]  J. Klingelhöfer,et al.  Removal of calcium ions triggers a novel type of intercadherin interaction. , 1999, Journal of cell science.

[38]  J. Hus,et al.  Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data , 2000, Journal of biomolecular NMR.

[39]  D. Leckband,et al.  Mechanism of homophilic cadherin adhesion. , 2000, Current opinion in cell biology.

[40]  Y. Ishii,et al.  Alignment of Biopolymers in Strained Gels: A New Way To Create Detectable Dipole−Dipole Couplings in High-Resolution Biomolecular NMR , 2000 .

[41]  S. Grzesiek,et al.  Solution NMR of proteins within polyacrylamide gels: Diffusional properties and residual alignment by mechanical stress or embedding of oriented purple membranes , 2000, Journal of biomolecular NMR.

[42]  H Schindler,et al.  Cadherin interaction probed by atomic force microscopy. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[43]  M. Ikura,et al.  Letter to the Editor: Sequence-specific resonance assignments and partial unfolding of extracellular domains II and III of E-cadherin , 2000, Journal of biomolecular NMR.

[44]  B. Angst,et al.  COMMENTARY The cadherin superfamily: diversity in form and function , 2022 .

[45]  C. Kay,et al.  Multiple cadherin extracellular repeats mediate homophilic binding and adhesion , 2001, The Journal of cell biology.

[46]  T. Boggon,et al.  C-Cadherin Ectodomain Structure and Implications for Cell Adhesion Mechanisms , 2002, Science.

[47]  G Marius Clore,et al.  Using conjoined rigid body/torsion angle simulated annealing to determine the relative orientation of covalently linked protein domains from dipolar couplings. , 2002, Journal of magnetic resonance.