Laminated turbo codes: A new class of block-convolutional codes

In this paper, a new class of codes is presented that features a block-convolutional structure-namely, laminated turbo codes. It allows combining the advantages of both a convolutional encoder memory and a block permutor, thus allowing a block-oriented decoding method. Structural properties of laminated turbo codes are analyzed and upper and lower bounds on free distance are obtained. It is then shown that the performance of laminated turbo codes compares favorably with that of turbo codes. Finally, we show that laminated turbo codes provide high rate flexibility without suffering any significant performance degradation.

[1]  Joachim Hagenauer,et al.  Iterative decoding of binary block and convolutional codes , 1996, IEEE Trans. Inf. Theory.

[2]  Dariush Divsalar,et al.  Coding theorems for 'turbo-like' codes , 1998 .

[3]  Gottfried Ungerboeck,et al.  Channel coding with multilevel/phase signals , 1982, IEEE Trans. Inf. Theory.

[4]  Mohammad Mahdian,et al.  The Minimum Distance of Turbo-Like Codes , 2009, IEEE Transactions on Information Theory.

[5]  L. Litwin,et al.  Error control coding , 2001 .

[6]  Dariush Divsalar,et al.  Serial Concatenation of Interleaved Codes: Performance Analysis, Design, and Iterative Decoding , 1997, IEEE Trans. Inf. Theory.

[7]  Paul H. Siegel,et al.  The serial concatenation of rate-1 codes through uniform random interleavers , 2003, IEEE Trans. Inf. Theory.

[8]  Dariush Divsalar,et al.  Serial and Hybrid Concatenated Codes with Applications , 1997 .

[9]  Michael Lentmaier,et al.  Laminated turbo codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[10]  Philip S. Yu,et al.  A Hybrid ARQ Scheme with Parity Retransmission for Error Control of Satellite Channels , 1982, IEEE Trans. Commun..

[11]  Sergio Benedetto,et al.  Unveiling turbo codes: some results on parallel concatenated coding schemes , 1996, IEEE Trans. Inf. Theory.

[12]  Joachim Hagenauer,et al.  Rate-compatible punctured convolutional codes (RCPC codes) and their applications , 1988, IEEE Trans. Commun..

[13]  David M. Mandelbaum,et al.  An adaptive-feedback coding scheme using incremental redundancy (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[14]  D. Divsalar,et al.  Multiple turbo codes for deep-space communications , 1995 .

[15]  Michael Lentmaier,et al.  Some Results Concerning the Design and Decoding of Turbo-Codes , 2001, Probl. Inf. Transm..

[16]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[17]  Dariush Divsalar,et al.  Soft-Output Decoding Algorithms in Iterative Decoding of Turbo Codes , 1996 .

[18]  Dariush Divsalar,et al.  Analysis, Design, and Iterative Decoding of Double Serially Concatenated Codes with Interleavers , 1998, IEEE J. Sel. Areas Commun..

[19]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[20]  Michael Lentmaier,et al.  Joint Permutor Analysis and Design for Multiple Turbo Codes , 2006, IEEE Transactions on Information Theory.

[21]  Marco Breiling,et al.  A logarithmic upper bound on the minimum distance of turbo codes , 2004, IEEE Transactions on Information Theory.

[22]  Daniel J. Costello,et al.  On the Design of Laminated Turbo Codes , 2006 .