Toward the first quantum simulation with quantum speedup

Significance Near-term quantum computers will have limited numbers of qubits and will only be able to reliably perform limited numbers of gates. Therefore, it is crucial to identify applications of quantum processors that use the fewest possible resources. We argue that simulating the time evolution of spin systems is a classically hard problem of practical interest that is among the easiest to address with early quantum devices. We develop optimized implementations and perform detailed resource analyses for several leading quantum algorithms for this problem. By evaluating the best approaches to small-scale quantum simulation, we provide a detailed blueprint for what could be an early practical application of quantum computers. With quantum computers of significant size now on the horizon, we should understand how to best exploit their initially limited abilities. To this end, we aim to identify a practical problem that is beyond the reach of current classical computers, but that requires the fewest resources for a quantum computer. We consider quantum simulation of spin systems, which could be applied to understand condensed matter phenomena. We synthesize explicit circuits for three leading quantum simulation algorithms, using diverse techniques to tighten error bounds and optimize circuit implementations. Quantum signal processing appears to be preferred among algorithms with rigorous performance guarantees, whereas higher-order product formulas prevail if empirical error estimates suffice. Our circuits are orders of magnitude smaller than those for the simplest classically infeasible instances of factoring and quantum chemistry, bringing practical quantum computation closer to reality.

[1]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[2]  Earl Campbell,et al.  Shorter gate sequences for quantum computing by mixing unitaries , 2016, 1612.02689.

[3]  M. Troyer,et al.  Elucidating reaction mechanisms on quantum computers , 2016, Proceedings of the National Academy of Sciences.

[4]  Isaac L. Chuang,et al.  Methodology of Resonant Equiangular Composite Quantum Gates , 2016, 1603.03996.

[5]  M. Hastings,et al.  Solving strongly correlated electron models on a quantum computer , 2015, 1506.05135.

[6]  Yasuhiro Takahashi,et al.  A quantum circuit for shor's factoring algorithm using 2n + 2 qubits , 2006, Quantum Inf. Comput..

[7]  Neil J. Ross,et al.  Optimal ancilla-free Clifford+T approximation of z-rotations , 2014, Quantum Inf. Comput..

[8]  E. Knill,et al.  Quantum algorithms for fermionic simulations , 2000, cond-mat/0012334.

[9]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[10]  J. Preskill,et al.  Quantum Algorithms for Fermionic Quantum Field Theories , 2014, 1404.7115.

[11]  Andrew M. Childs,et al.  Simulating Hamiltonian dynamics with a truncated Taylor series. , 2014, Physical review letters.

[12]  Dmitri Maslov,et al.  Optimal and asymptotically optimal NCT reversible circuits by the gate types , 2016, Quantum Inf. Comput..

[13]  David Poulin,et al.  The Trotter step size required for accurate quantum simulation of quantum chemistry , 2014, Quantum Inf. Comput..

[14]  M. Schreiber,et al.  Observation of many-body localization of interacting fermions in a quasirandom optical lattice , 2015, Science.

[15]  Jeongwan Haah,et al.  Quantum Algorithm for Simulating Real Time Evolution of Lattice Hamiltonians , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[16]  E. Knill,et al.  Simulating physical phenomena by quantum networks , 2001, quant-ph/0108146.

[17]  Noboru Kunihiro Exact Analyses of Computational Time for Factoring in Quantum Computers , 2005, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[18]  John Preskill,et al.  Quantum Algorithms for Quantum Field Theories , 2011, Science.

[19]  Samuel A. Kutin Shor's algorithm on a nearest-neighbor machine , 2006 .

[20]  John A. Gunnels,et al.  Pareto-Efficient Quantum Circuit Simulation Using Tensor Contraction Deferral , 2017 .

[21]  R. Barends,et al.  Digital quantum simulation of fermionic models with a superconducting circuit , 2015, Nature Communications.

[22]  Z Papić,et al.  Interferometric probes of many-body localization. , 2014, Physical review letters.

[23]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[24]  Dmitri Maslov,et al.  Experimental comparison of two quantum computing architectures , 2017, Proceedings of the National Academy of Sciences.

[25]  I. Chuang,et al.  Limitations of quantum simulation examined by simulating a pairing Hamiltonian using nuclear magnetic resonance. , 2006, Physical review letters.

[26]  Bela Bauer,et al.  Analyzing Many-Body Localization with a Quantum Computer , 2014, 1407.1840.

[27]  Dmitri Maslov,et al.  On the advantages of using relative phase Toffolis with an application to multiple control Toffoli optimization , 2015, ArXiv.

[28]  Jian-Wei Pan,et al.  10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit. , 2017, Physical review letters.

[29]  John Preskill,et al.  Quantum computation of scattering in scalar quantum field theories , 2011, Quantum Inf. Comput..

[30]  Dmitri Maslov,et al.  Automated optimization of large quantum circuits with continuous parameters , 2017, npj Quantum Information.

[31]  Martin Rötteler,et al.  Quantum Resource Estimates for Computing Elliptic Curve Discrete Logarithms , 2017, ASIACRYPT.

[32]  Matthew B. Hastings,et al.  Improving quantum algorithms for quantum chemistry , 2014, Quantum Inf. Comput..

[33]  Andrew M. Childs,et al.  Simulating Sparse Hamiltonians with Star Decompositions , 2010, TQC.

[34]  Alán Aspuru-Guzik,et al.  Exponentially more precise quantum simulation of fermions II: Quantum chemistry in the CI matrix representation , 2015 .

[35]  Martin Rötteler,et al.  Factoring using $2n+2$ qubits with Toffoli based modular multiplication , 2016, Quantum Inf. Comput..

[36]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[37]  Andrew M. Childs,et al.  Quantum information processing in continuous time , 2004 .

[38]  Annie Y. Wei,et al.  Exponentially more precise quantum simulation of fermions in second quantization , 2015, 1506.01020.

[39]  R. Feynman Simulating physics with computers , 1999 .

[40]  Arjen K. Lenstra,et al.  Factorization of a 768-Bit RSA Modulus , 2010, CRYPTO.

[41]  F. Alet,et al.  Many-body localization edge in the random-field Heisenberg chain , 2014, 1411.0660.

[42]  Martin Rötteler,et al.  Efficient synthesis of universal Repeat-Until-Success circuits , 2014, Physical review letters.

[43]  Amnon Ta-Shma,et al.  Adiabatic quantum state generation and statistical zero knowledge , 2003, STOC '03.

[44]  D. Huse,et al.  Many-body localization phase transition , 2010, 1003.2613.

[45]  I. Chuang,et al.  Optimal Hamiltonian Simulation by Quantum Signal Processing. , 2016, Physical review letters.

[46]  Dmitri Maslov,et al.  Fast and efficient exact synthesis of single-qubit unitaries generated by clifford and T gates , 2012, Quantum Inf. Comput..

[47]  Simon J. Devitt,et al.  Implementation of Shor's algorithm on a linear nearest neighbour qubit array , 2004, Quantum Inf. Comput..

[48]  Thomas Häner,et al.  0.5 Petabyte Simulation of a 45-Qubit Quantum Circuit , 2017, SC17: International Conference for High Performance Computing, Networking, Storage and Analysis.

[49]  Andrew M. Childs On the Relationship Between Continuous- and Discrete-Time Quantum Walk , 2008, 0810.0312.

[50]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[51]  Dhiraj K. Pradhan,et al.  On the Design and Optimization of a Quantum Polynomial-Time Attack on Elliptic Curve Cryptography , 2007, TQC.

[52]  Aaron C. E. Lee,et al.  Many-body localization in a quantum simulator with programmable random disorder , 2015, Nature Physics.

[53]  I. Chuang,et al.  Hamiltonian Simulation by Qubitization , 2016, Quantum.

[54]  Aram W. Harrow,et al.  Quantum computational supremacy , 2017, Nature.

[55]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[56]  B. Lanyon,et al.  Universal Digital Quantum Simulation with Trapped Ions , 2011, Science.

[57]  Andrew M. Childs,et al.  Hamiltonian Simulation with Nearly Optimal Dependence on all Parameters , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[58]  John A. Gunnels,et al.  Breaking the 49-Qubit Barrier in the Simulation of Quantum Circuits , 2017, 1710.05867.

[59]  Preskill,et al.  Efficient networks for quantum factoring. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[60]  Benoît Valiron,et al.  Quipper: a scalable quantum programming language , 2013, PLDI.

[61]  Alán Aspuru-Guzik,et al.  On the Chemical Basis of Trotter-Suzuki Errors in Quantum Chemistry Simulation , 2014, 1410.8159.

[62]  Stéphane Beauregard Circuit for Shor's algorithm using 2n+3 qubits , 2003, Quantum Inf. Comput..

[63]  Andrew M. Childs,et al.  Black-box hamiltonian simulation and unitary implementation , 2009, Quantum Inf. Comput..

[64]  B. Sanders,et al.  Quantum-circuit design for efficient simulations of many-body quantum dynamics , 2011, 1108.4318.

[65]  C. Monroe,et al.  Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator , 2017, Nature.

[66]  Dimitris Gizopoulos,et al.  Fast Quantum Modular Exponentiation Architecture for Shor's Factorization Algorithm , 2012, 1207.0511.

[67]  J. Bardarson,et al.  Many-body localization in a disordered quantum Ising chain. , 2014, Physical review letters.

[68]  David Poulin,et al.  Reducing the quantum-computing overhead with complex gate distillation , 2014, 1403.5280.

[69]  R. Nandkishore,et al.  Many-Body Localization and Thermalization in Quantum Statistical Mechanics , 2014, 1404.0686.

[70]  M. Hastings,et al.  Gate count estimates for performing quantum chemistry on small quantum computers , 2013, 1312.1695.

[71]  A N Cleland,et al.  Qubit Architecture with High Coherence and Fast Tunable Coupling. , 2014, Physical review letters.

[72]  J. Whitfield,et al.  Simulating chemistry using quantum computers. , 2010, Annual review of physical chemistry.

[73]  M. Suzuki,et al.  General theory of fractal path integrals with applications to many‐body theories and statistical physics , 1991 .

[74]  M. Mosca,et al.  A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[75]  Andrew M. Childs,et al.  Exponential improvement in precision for simulating sparse Hamiltonians , 2013, Forum of Mathematics, Sigma.

[76]  Nathan Wiebe,et al.  Hamiltonian simulation using linear combinations of unitary operations , 2012, Quantum Inf. Comput..