THE BLACK HOLE IN THE COMPACT, HIGH-DISPERSION GALAXY NGC 1271

Located in the Perseus cluster, NGC 1271 is an early-type galaxy with a small effective radius of 2.2 kpc and a large bulge stellar velocity dispersion of 276 km s−1 for its K-band luminosity of 8.9 × 10 10 L ⊙ ?> . We present a mass measurement for the black hole in this compact, high-dispersion galaxy using observations from the Near-infrared Integral Field Spectrometer on the Gemini North telescope assisted by laser guide star adaptive optics, large-scale integral field unit observations with PPAK at the Calar Alto Observatory, and Hubble Space Telescope WFC3 imaging observations. We are able to map out the stellar kinematics both on small spatial scales, within the black hole sphere of influence, and on large scales that extend out to four times the galaxy’s effective radius. We find that the galaxy is rapidly rotating and exhibits a sharp rise in the velocity dispersion. Through the use of orbit-based stellar dynamical models, we determine that the black hole has a mass of ( 3.0 − 1.1 + 1.0 ) × 10 9 M ⊙ ?> and the H-band stellar mass-to-light ratio is 1.40 − 0.11 + 0.13 ϒ ⊙ ?> ( 1 &sgr; ?> uncertainties). NGC 1271 occupies the sparsely populated upper end of the black hole mass distribution but is very different from the brightest cluster galaxies (BCGs) and giant elliptical galaxies that are expected to host the most massive black holes. Interestingly, the black hole mass is an order of magnitude larger than expectations based on the galaxy’s bulge luminosity but is consistent with the mass predicted using the galaxy’s bulge stellar velocity dispersion. More compact, high-dispersion galaxies need to be studied using high spatial resolution observations to securely determine black hole masses, as there could be systematic differences in the black hole scaling relations between these types of galaxies and the BCGs/giant ellipticals, thereby implying different pathways for black hole and galaxy growth.

[1]  U. Austin,et al.  HUNTING FOR SUPERMASSIVE BLACK HOLES IN NEARBY GALAXIES WITH THE HOBBY–EBERLY TELESCOPE , 2015, 1502.00632.

[2]  I. Chilingarian,et al.  A supermassive black hole in an ultra-compact dwarf galaxy , 2014, Nature.

[3]  B. Peterson,et al.  THE BLACK HOLE MASS OF NGC 4151. II. STELLAR DYNAMICAL MEASUREMENT FROM NEAR-INFRARED INTEGRAL FIELD SPECTROSCOPY , 2014, 1406.6735.

[4]  C. Foster,et al.  The SLUGGS survey: new evidence for a tidal interaction between the early type galaxies NGC 4365 and NGC 4342 , 2014, 1401.5128.

[5]  K. Schawinski,et al.  SUBMILLIMETER GALAXIES AS PROGENITORS OF COMPACT QUIESCENT GALAXIES , 2014, 1401.1510.

[6]  R. Bender,et al.  THE INFLUENCE OF DARK MATTER HALOS ON DYNAMICAL ESTIMATES OF BLACK HOLE MASS: 10 NEW MEASUREMENTS FOR HIGH-σ EARLY-TYPE GALAXIES , 2013, 1306.1124.

[7]  E. Emsellem Is the black hole in NGC 1277 really overmassive , 2013, 1305.3630.

[8]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.

[9]  University of California,et al.  THE M87 BLACK HOLE MASS FROM GAS-DYNAMICAL MODELS OF SPACE TELESCOPE IMAGING SPECTROGRAPH OBSERVATIONS , 2013, 1304.7273.

[10]  M. Rees,et al.  X-ray emission from the ultramassive black hole candidate NGC 1277: implications and speculations on its origin , 2013, 1301.1800.

[11]  Chung-Pei Ma,et al.  REVISITING THE SCALING RELATIONS OF BLACK HOLE MASSES AND HOST GALAXY PROPERTIES , 2012, 1211.2816.

[12]  A. V. D. Wel,et al.  An over-massive black hole in the compact lenticular galaxy NGC 1277 , 2012, Nature.

[13]  Chien Y. Peng,et al.  STRUCTURAL PARAMETERS OF GALAXIES IN CANDELS , 2012, 1211.6954.

[14]  S. Gonzaga,et al.  The DrizzlePac Handbook , 2012 .

[15]  University of California,et al.  A STELLAR DYNAMICAL MASS MEASUREMENT OF THE BLACK HOLE IN NGC 3998 FROM KECK ADAPTIVE OPTICS OBSERVATIONS , 2012, 1205.0816.

[16]  Jeremy D. Murphy,et al.  DYNAMICAL MEASUREMENTS OF BLACK HOLE MASSES IN FOUR BRIGHTEST CLUSTER GALAXIES AT 100 Mpc , 2012, 1203.1620.

[17]  P. Harding,et al.  EXPLORING THE UNUSUALLY HIGH BLACK-HOLE-TO-BULGE MASS RATIOS IN NGC 4342 AND NGC 4291: THE ASYNCHRONOUS GROWTH OF BULGES AND BLACK HOLES , 2012, 1203.1641.

[18]  A. Quirrenbach,et al.  CALIFA, the Calar Alto Legacy Integral Field Area survey : I. Survey presentation , 2011, 1111.0962.

[19]  Timothy A. Davis,et al.  The ATLAS3D project – III. A census of the stellar angular momentum within the effective radius of early‐type galaxies: unveiling the distribution of fast and slow rotators , 2011, 1102.4444.

[20]  H. Rix,et al.  THE MAJORITY OF COMPACT MASSIVE GALAXIES AT z ∼ 2 ARE DISK DOMINATED , 2011, 1101.2423.

[21]  Tod R. Lauer,et al.  THE BLACK HOLE MASS IN M87 FROM GEMINI/NIFS ADAPTIVE OPTICS OBSERVATIONS , 2011, 1101.1954.

[22]  K. Gebhardt,et al.  EFFECT OF A DARK MATTER HALO ON THE DETERMINATION OF BLACK HOLE MASSES , 2010, 1011.5077.

[23]  T. Lauer,et al.  THE BLACK HOLE MASS IN THE BRIGHTEST CLUSTER GALAXY NGC 6086 , 2010, 1009.0750.

[24]  K. Jahnke,et al.  THE NON-CAUSAL ORIGIN OF THE BLACK-HOLE–GALAXY SCALING RELATIONS , 2010, 1006.0482.

[25]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[26]  K. Viironen,et al.  CALIFA, the Calar Alto Legacy Integral Field Area survey: Early Report , 2010, 1012.3002.

[27]  R. Bender,et al.  The central black hole mass of the high‐σ but low‐bulge‐luminosity lenticular galaxy NGC 1332★ , 2010, 1009.0515.

[28]  M. Sarzi,et al.  THE SUPERMASSIVE BLACK HOLE IN M84 REVISITED , 2010, 1008.0005.

[29]  K. Olsen,et al.  THE NGC 404 NUCLEUS: STAR CLUSTER AND POSSIBLE INTERMEDIATE-MASS BLACK HOLE , 2010, 1003.0680.

[30]  Chien Y. Peng,et al.  DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.

[31]  D. Wake,et al.  THE GROWTH OF MASSIVE GALAXIES SINCE z = 2 , 2009, 0912.0514.

[32]  Juntai Shen,et al.  THE SUPERMASSIVE BLACK HOLE AND DARK MATTER HALO OF NGC 4649 (M60) , 2009, 0910.4168.

[33]  Claudia Winge,et al.  THE GEMINI SPECTRAL LIBRARY OF NEAR-IR LATE-TYPE STELLAR TEMPLATES AND ITS APPLICATION FOR VELOCITY DISPERSION MEASUREMENTS , 2009, 0910.2619.

[34]  S. Leiden,et al.  Estimating black hole masses in triaxial galaxies , 2009, 0910.0844.

[35]  Roger L. Davies,et al.  Determination of masses of the central black holes in NGC 524 and 2549 using laser guide star adaptive optics , 2009, 0907.3748.

[36]  P. Dokkum,et al.  A high stellar velocity dispersion for a compact massive galaxy at redshift z = 2.186 , 2009, Nature.

[37]  Karl Gebhardt,et al.  THE BLACK HOLE MASS, STELLAR MASS-TO-LIGHT RATIO, AND DARK HALO IN M87 , 2009, 0906.1492.

[38]  Ralf Bender,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE M–σ AND M–L RELATIONS IN GALACTIC BULGES, AND DETERMINATIONS OF THEIR INTRINSIC SCATTER , 2008 .

[39]  H. Rix,et al.  The mass of the black hole in Centaurus A from SINFONI AO-assisted integral-field observations of stellar kinematics , 2008, 0812.1000.

[40]  R. V. D. Bosch,et al.  Recovering the intrinsic shape of early‐type galaxies , 2008, 0811.3474.

[41]  Hatfield,et al.  THE HIGH-MASS END OF THE BLACK HOLE MASS FUNCTION: MASS ESTIMATES IN BRIGHTEST CLUSTER GALAXIES , 2008, 0809.0766.

[42]  C. Peng How Mergers May Affect the Mass Scaling Relation between Gravitationally Bound Systems , 2007 .

[43]  Institute for Advanced Study,et al.  Triaxial orbit based galaxy models with an application to the (apparent) decoupled core galaxy NGC 4365 , 2007, 0712.0113.

[44]  Harald Kuntschner,et al.  The SAURON project – IX. A kinematic classification for early‐type galaxies , 2007, astro-ph/0703531.

[45]  Tod R. Lauer,et al.  The Masses of Nuclear Black Holes in Luminous Elliptical Galaxies and Implications for the Space Density of the Most Massive Black Holes , 2006, astro-ph/0606739.

[46]  P. P. van der Werf,et al.  NICMOS Imaging of DRGs in the HDF-S: A Relation between Star Formation and Size at z ~ 2.5 , 2006, astro-ph/0611245.

[47]  Gustavo Arriagada,et al.  Laser guide star upgrade of Altair at Gemini North , 2006, SPIE Astronomical Telescopes + Instrumentation.

[48]  L. Kewley,et al.  The host galaxies and classification of active galactic nuclei , 2006, astro-ph/0605681.

[49]  M. Verheijen,et al.  PMAS: The Potsdam Multi‐Aperture Spectrophotometer. II. The Wide Integral Field Unit PPak , 2005, astro-ph/0512557.

[50]  R. Davies,et al.  The SAURON project - IV. The mass-to-light ratio, the virial mass estimator and the Fundamental Plane of elliptical and lenticular galaxies , 2005, astro-ph/0505042.

[51]  R. Bender,et al.  Regularized orbit models unveiling the stellar structure and dark matter halo of the Coma elliptical NGC 4807 , 2005, astro-ph/0504466.

[52]  H Germany,et al.  PMAS: The Potsdam Multi‐Aperture Spectrophotometer. I. Design, Manufacture, and Performance , 2005, astro-ph/0502581.

[53]  M. Cappellari,et al.  Dynamical modelling of stars and gas in NGC 2974: determination of mass-to-light ratio, inclination and orbital structure using the Schwarzschild method , 2004, astro-ph/0412186.

[54]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[55]  M. Bureau,et al.  Bar Diagnostics in Edge-On Spiral Galaxies. III. N-Body Simulations of Disks , 2004, astro-ph/0403226.

[56]  Harinder P. Singh,et al.  The Indo-US Library of Coudé Feed Stellar Spectra , 2004, astro-ph/0402435.

[57]  Eric Emsellem,et al.  Parametric Recovery of Line‐of‐Sight Velocity Distributions from Absorption‐Line Spectra of Galaxies via Penalized Likelihood , 2003, astro-ph/0312201.

[58]  M. Bershady,et al.  The Disk Mass project; science case for a new PMAS IFU module , 2003, astro-ph/0311555.

[59]  J. Krist The Tiny Tim User’s Guide , 2004 .

[60]  A. Marconi,et al.  The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity , 2003, astro-ph/0304274.

[61]  Jan Van Harmelen,et al.  Gemini near-infrared integral field spectrograph (NIFS) , 2003, SPIE Astronomical Telescopes + Instrumentation.

[62]  Michele Cappellari,et al.  Adaptive spatial binning of integral-field spectroscopic data using Voronoi tessellations , 2003, astro-ph/0302262.

[63]  S. Tremaine,et al.  Axisymmetric Dynamical Models of the Central Regions of Galaxies , 2002, astro-ph/0209483.

[64]  M. Cappellari Efficient multi-Gaussian expansion of galaxies , 2002, astro-ph/0201430.

[65]  Glen Herriot,et al.  Progress on Altair: the Gemini North adaptive optics system , 2000, Astronomical Telescopes and Instrumentation.

[66]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[67]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[68]  Garth D. Illingworth,et al.  The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. XXVIII. Combining the Constraints on the Hubble Constant , 1999, astro-ph/9909260.

[69]  A. Fabian THE OBSCURED GROWTH OF MASSIVE BLACK HOLES , 1999, astro-ph/9908064.

[70]  N. Cretton,et al.  Evidence for a Massive Black Hole in the S0 Galaxy NGC 4342 , 1998, astro-ph/9805324.

[71]  S. Tremaine,et al.  Spectroscopic Evidence for a Supermassive Black Hole in NGC 4486B , 1997, astro-ph/9703188.

[72]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[73]  R. Peletier,et al.  A new chemo-evolutionary population synthesis model for early-type galaxies .1. Theoretical basis , 1996, astro-ph/9605112.

[74]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[75]  John Kormendy,et al.  Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .

[76]  R. Bender,et al.  Line-of-sight velocity distributions of elliptical galaxies , 1994 .

[77]  M. Franx,et al.  A new method for the identification of non-Gaussian line profiles in elliptical galaxies , 1993 .

[78]  M. Schwarzschild,et al.  A numerical model for a triaxial stellar system in dynamical equilibrium , 1979 .

[79]  S. M. Faber,et al.  Tidal Origin of Elliptical Galaxies of High Surface Brightness , 1973 .