Realizing a Planar 4H-SiC Junctionless FET for Sub-10-nm Regime Using P+ Pocket

In this paper, using calibrated device simulations, we propose the use of a P<sup>+</sup> pocket at channel–drain and channel–source interfaces in 4H-SiC junctionless FET (4H-SiC p-JLFET) to achieve efficient volume depletion in the sub-10-nm regime; thus relaxing the need of channel thickness scaling or the use of complex device architectures. The P<sup>+</sup> pocket improves the OFF-state current (I<sub>OFF</sub>) by ~ 10<sup>9</sup>, while slightly degrading the ON-state current (I<sub>ON</sub>) and subthreshold slope (SS) for a 7-nm channel length device. This large gain in I<sub>OFF</sub> presents the possibility of realizing multiple threshold voltage (<inline-formula> <tex-math notation="LaTeX">${V}_{\text {TH}}$ </tex-math></inline-formula>) devices by tuning the metal-gate work function, which helps in creating optimized designs in terms of area, power, leakage, and performance, which is not possible in Si JLFETs, due to their need of high metal-gate work functions to achieve volume depletion even at larger channel lengths. The 4H-SiC p-JLFET gives ~1pA/<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}~\text{I}_{ \mathrm{\scriptscriptstyle OFF}}$ </tex-math></inline-formula> even at an elevated temperature of 600 K. We also discuss the scaling of the SiC p-JLFETs for 7- and 5-nm channel length.

[1]  P. Sung,et al.  A novel junctionless FinFET structure with sub-5nm shell doping profile by molecular monolayer doping and microwave annealing , 2014, 2014 IEEE International Electron Devices Meeting.

[2]  M. J. Kumar,et al.  A Planar Junctionless FET Using SiC With Reduced Impact of Interface Traps: Proposal and Analysis , 2017, IEEE Transactions on Electron Devices.

[3]  M. Mudholkar,et al.  Characterization and Modeling of 4H-SiC Lateral MOSFETs for Integrated Circuit Design , 2013, IEEE Transactions on Electron Devices.

[4]  Shashank Krishnamurthy,et al.  Design and performance of a high frequency silicon carbide inverter , 2011, 2011 IEEE Energy Conversion Congress and Exposition.

[5]  Chi-Woo Lee,et al.  Junctionless multigate field-effect transistor , 2009 .

[6]  Chenming Hu,et al.  Ultra-thin body SOI MOSFET for deep-sub-tenth micron era , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[7]  H. Mantooth,et al.  High-Temperature Silicon-on-Insulator Gate Driver for SiC-FET Power Modules , 2012, IEEE Transactions on Power Electronics.

[8]  Chenming Hu,et al.  Ultrathin-body SOI MOSFET for deep-sub-tenth micron era , 2000, IEEE Electron Device Letters.

[9]  C. Hu,et al.  FinFET-a self-aligned double-gate MOSFET scalable to 20 nm , 2000 .

[10]  Chi-Woo Lee,et al.  High-Temperature Performance of Silicon Junctionless MOSFETs , 2010, IEEE Transactions on Electron Devices.

[11]  Sung-Jin Choi,et al.  Sensitivity of Threshold Voltage to Nanowire Width Variation in Junctionless Transistors , 2011, IEEE Electron Device Letters.

[12]  M. J. Kumar,et al.  Controlling BTBT-Induced Parasitic BJT Action in Junctionless FETs Using a Hybrid Channel , 2016, IEEE Transactions on Electron Devices.

[13]  Chi-Woo Lee,et al.  Nanowire transistors without junctions. , 2010, Nature nanotechnology.

[14]  L. Latu-Romain,et al.  Silicon carbide based one-dimensional nanostructure growth: towards electronics and biology perspectives , 2014 .

[15]  S. Saurabh,et al.  Fundamentals of Tunnel Field-Effect Transistors , 2016 .

[16]  Pratyush Pandey,et al.  Tunnel field-effect transistors (TFET) : modelling and simulation , 2016 .

[17]  Chun-Yen Chang,et al.  High voltage characteristics of junctionless poly-silicon thin film transistors , 2013 .

[18]  S.C. Rustagi,et al.  High-performance fully depleted silicon nanowire (diameter /spl les/ 5 nm) gate-all-around CMOS devices , 2006, IEEE Electron Device Letters.

[19]  A. Kranti,et al.  Junctionless nanowire transistor (JNT): Properties and design guidelines , 2010, 2010 Proceedings of the European Solid State Device Research Conference.