Algorithms for Fundamental Problems in Computer Networks

Traditional studies of algorithms consider the sequential setting, where the whole input data is fed into a single device that computes the solution. Today, the network, such as the Internet, contains of a vast amount of information. The overhead of aggregating all the information into a single device is too expensive, so a distributed approach to solve the problem is often preferable. In this thesis, we aim to develop efficient algorithms for the following fundamental graph problems that arise in networks, in both sequential and distributed settings. Graph coloring is a basic symmetry breaking problem in distributed computing. Each node is to be assigned a color such that adjacent nodes are assigned different colors. Both the efficiency and the quality of coloring are important measures of an algorithm. One of our main contributions is providing tools for obtaining colorings of good quality whose existence are non-trivial. We also consider other optimization problems in the distributed setting. For example, we investigate efficient methods for identifying the connectivity as well as the bottleneck edges in a distributed network. Our approximation algorithm is almost-tight in the sense that the running time matches the known lower bound up to a poly-logarithmic factor. For another example, we model how the task allocation can be done in ant colonies, when the ants may have different capabilities in doing different tasks. The matching problems are one of the classic combinatorial optimization problems. We study the weighted matching problems in the sequential setting. We give a new scaling algorithm for finding the maximum weight perfect matching in general graphs, which improves the long-standing Gabow-Tarjan’s algorithm (1991) and matches the running time of the best weighted bipartite perfect matching algorithm (Gabow and Tarjan, 1989). Furthermore, for the maximum weight matching problem in bipartite graphs, we give a faster scaling algorithm whose running time is faster than Gabow and Tarjan’s weighted bipartite perfect matching algorithm.

[1]  Ran Duan,et al.  A scaling algorithm for maximum weight matching in bipartite graphs , 2012, SODA.

[2]  Sundar Vishwanathan,et al.  Locality based graph coloring , 1993, STOC.

[3]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[4]  Boaz Patt-Shamir,et al.  Distributed Approximate Matching , 2009, SIAM J. Comput..

[5]  Roger Wattenhofer,et al.  A new technique for distributed symmetry breaking , 2010, PODC '10.

[6]  Piotr Sankowski,et al.  Weighted Bipartite Matching in Matrix Multiplication Time , 2006, ICALP.

[7]  Joel H. Spencer,et al.  Asymptotic lower bounds for Ramsey functions , 1977, Discret. Math..

[8]  Aravind Srinivasan,et al.  The Randomized Coloring Procedure with Symmetry-Breaking , 2008, ICALP.

[9]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[10]  Ziv Bar-Joseph,et al.  Distributed information processing in biological and computational systems , 2014, Commun. ACM.

[11]  F. L. Hitchcock The Distribution of a Product from Several Sources to Numerous Localities , 1941 .

[12]  Jeong Han Kim On Brooks' Theorem for Sparse Graphs , 1995, Comb. Probab. Comput..

[13]  Michael Luby,et al.  A simple parallel algorithm for the maximal independent set problem , 1985, STOC '85.

[14]  Seth Pettie,et al.  Linear-Time Approximation for Maximum Weight Matching , 2014, JACM.

[15]  Alexander V. Karzanov,et al.  On finding a maximum flow in a network with special structure and some applications 1 , 1973 .

[16]  Ravindra K. Ahuja,et al.  New scaling algorithms for the assignment and minimum mean cycle problems , 1992, Math. Program..

[17]  Mikkel Thorup Compact oracles for reachability and approximate distances in planar digraphs , 2004, JACM.

[18]  Devdatt P. Dubhashi,et al.  Concentration of Measure for the Analysis of Randomized Algorithms: Contents , 2009 .

[19]  M. Karonski,et al.  Distributed O(∆ log n)-Edge-Coloring Algorithm , 2022 .

[20]  Vijay V. Vazirani An Improved Definition of Blossoms and a Simpler Proof of the MV Matching Algorithm , 2012, ArXiv.

[21]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[22]  Harold N. Gabow,et al.  A scaling algorithm for weighted matching on general graphs , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[23]  Maleq Khan,et al.  A fast distributed approximation algorithm for minimum spanning trees , 2007, Distributed Computing.

[24]  Wesley Pegden,et al.  An Extension of the Moser-Tardos Algorithmic Local Lemma , 2011, SIAM J. Discret. Math..

[25]  D M Gordon,et al.  A trade-off in task allocation between sensitivity to the environment and response time. , 2001, Journal of theoretical biology.

[26]  Leonid Barenboim,et al.  The Locality of Distributed Symmetry Breaking , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[27]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[28]  Aravind Srinivasan,et al.  Randomized Distributed Edge Coloring via an Extension of the Chernoff-Hoeffding Bounds , 1997, SIAM J. Comput..

[29]  Christian Scheideler,et al.  A new algorithm approach to the general Lovász local lemma with applications to scheduling and satisfiability problems (extended abstract) , 2000, STOC '00.

[30]  Piotr Sankowski,et al.  Algebraic Algorithms for B-Matching, Shortest Undirected Paths, and F-Factors , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[31]  Richard Cole,et al.  Approximate and exact parallel scheduling with applications to list, tree and graph problems , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[32]  Leonid Barenboim,et al.  Deterministic Distributed Vertex Coloring in Polylogarithmic Time , 2010, JACM.

[33]  Zvi Galil,et al.  Efficient Implementation of Graph Algorithms Using Contraction , 1984, FOCS.

[34]  Karthekeyan Chandrasekaran,et al.  Deterministic algorithms for the Lovász Local Lemma , 2009, SODA '10.

[35]  Éva Tardos,et al.  Fast Approximation Algorithms for Fractional Packing and Covering Problems , 1995, Math. Oper. Res..

[36]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[37]  Aravind Srinivasan,et al.  On the Complexity of Distributed Network Decomposition , 1996, J. Algorithms.

[38]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[39]  David R. Karger,et al.  Using randomized sparsification to approximate minimum cuts , 1994, SODA '94.

[40]  Deborah M. Gordon,et al.  Effects of social group size on information transfer and task allocation , 1996, Evolutionary Ecology.

[41]  Aravind Srinivasan,et al.  A constructive algorithm for the Lovász Local Lemma on permutations , 2014, SODA.

[42]  Neal E. Young,et al.  Randomized rounding without solving the linear program , 1995, SODA '95.

[43]  Aravind Srinivasan Improved algorithmic versions of the Lovász Local Lemma , 2008, SODA '08.

[44]  Nathan Linial,et al.  Locality in Distributed Graph Algorithms , 1992, SIAM J. Comput..

[45]  Andrew V. Goldberg,et al.  Parallel Symmetry-Breaking in Sparse Graphs , 1988, SIAM J. Discret. Math..

[46]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[47]  L. S. Shapley,et al.  College Admissions and the Stability of Marriage , 2013, Am. Math. Mon..

[48]  Robert E. Tarjan,et al.  A Linear-Time Algorithm for a Special Case of Disjoint Set Union , 1985, J. Comput. Syst. Sci..

[49]  Noga Alon,et al.  Coloring Graphs with Sparse Neighborhoods , 1999, J. Comb. Theory B.

[50]  Flavio Chierichetti,et al.  The Local Nature of List Colorings for Graphs of High Girth , 2010, SIAM J. Comput..

[51]  David Pritchard,et al.  Fast computation of small cuts via cycle space sampling , 2007, TALG.

[52]  Harold N. Gabow Scaling Algorithms for Network Problems , 1985, J. Comput. Syst. Sci..

[53]  David Peleg,et al.  Distributed Computing: A Locality-Sensitive Approach , 1987 .

[54]  Robert E. Tarjan,et al.  Faster Scaling Algorithms for Network Problems , 1989, SIAM J. Comput..

[55]  Robert E. Tarjan,et al.  Faster scaling algorithms for general graph matching problems , 1991, JACM.

[56]  Harold N. Gabow,et al.  An Efficient Implementation of Edmonds' Algorithm for Maximum Matching on Graphs , 1976, JACM.

[57]  Leonid Barenboim,et al.  Distributed (δ+1)-coloring in linear (in δ) time , 2009, STOC '09.

[58]  R. P. Dilworth,et al.  A DECOMPOSITION THEOREM FOR PARTIALLY ORDERED SETS , 1950 .

[59]  Michael L. Fredman,et al.  Trans-Dichotomous Algorithms for Minimum Spanning Trees and Shortest Paths , 1994, J. Comput. Syst. Sci..

[60]  Nicholas J. A. Harvey Algebraic Algorithms for Matching and Matroid Problems , 2009, SIAM J. Comput..

[61]  Bolian Liu,et al.  Combinatorial Properties of Matrices , 2000 .

[62]  József Beck,et al.  An Algorithmic Approach to the Lovász Local Lemma. I , 1991, Random Struct. Algorithms.

[63]  David R. Karger,et al.  Global min-cuts in RNC, and other ramifications of a simple min-out algorithm , 1993, SODA '93.

[64]  Carl Gustav Jacob,et al.  Looking for the order of a system of arbitrary ordinary differential equations , 2013 .

[65]  Roger Wattenhofer,et al.  Local Computation , 2010, J. ACM.

[66]  P. Erdos-L Lovász Problems and Results on 3-chromatic Hypergraphs and Some Related Questions , 2022 .

[67]  W. Cunningham,et al.  A primal algorithm for optimum matching , 1978 .

[68]  Hsin-Hao Su,et al.  (2Δ - l)-Edge-Coloring is Much Easier than Maximal Matching in the Distributed Setting , 2015, SODA.

[69]  B. Reed Graph Colouring and the Probabilistic Method , 2001 .

[70]  Robin A. Moser A constructive proof of the Lovász local lemma , 2008, STOC '09.

[71]  Robert B. Dial,et al.  Algorithm 360: shortest-path forest with topological ordering [H] , 1969, CACM.

[72]  Danupon Nanongkai,et al.  Distributed approximation algorithms for weighted shortest paths , 2014, STOC.

[73]  Ming-Yang Kao,et al.  A Decomposition Theorem for Maximum Weight Bipartite Matchings , 2000, SIAM J. Comput..

[74]  D. Matula A linear time 2 + ε approximation algorithm for edge connectivity , 1993, SODA 1993.

[75]  Ken-ichi Kawarabayashi,et al.  Deterministic Global Minimum Cut of a Simple Graph in Near-Linear Time , 2014, STOC.

[76]  Noga Alon,et al.  A Biological Solution to a Fundamental Distributed Computing Problem , 2011, Science.

[77]  Alessandro Panconesi,et al.  Fast distributed algorithms for Brooks-Vizing colourings , 2000, SODA '98.

[78]  Paul A. Catlin A bound on the chromatic number of a graph , 1978, Discret. Math..

[79]  V. G. Vizing SOME UNSOLVED PROBLEMS IN GRAPH THEORY , 1968 .

[80]  Andrew V. Goldberg,et al.  Parallel ((Greek D)D+1)-Coloring of Constant-Degree Graphs , 1987, Inf. Process. Lett..

[81]  Mikkel Thorup,et al.  Fully-Dynamic Min-Cut* , 2007, Comb..

[82]  Alessandro Panconesi,et al.  Some simple distributed algorithms for sparse networks , 2001, Distributed Computing.

[83]  Aleksander Madry,et al.  Navigating Central Path with Electrical Flows: From Flows to Matchings, and Back , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[84]  David R. Karger,et al.  An Õ(n2) algorithm for minimum cuts , 1993, STOC.

[85]  Hsin-Hao Su,et al.  Almost-Tight Distributed Minimum Cut Algorithms , 2014, DISC.

[86]  R. Gomory,et al.  A Primal Method for the Assignment and Transportation Problems , 1964 .

[87]  Fabian Kuhn,et al.  Distributed Minimum Cut Approximation , 2013, DISC.

[88]  S. Micali,et al.  Priority queues with variable priority and an O(EV log V) algorithm for finding a maximal weighted matching in general graphs , 1982, FOCS 1982.

[90]  Andrew V. Goldberg,et al.  Global Price Updates Help , 1997, SIAM J. Discret. Math..

[91]  C. W. Borchardt,et al.  De investigando ordine systematis aequationum differentialium vulgarium cujuscunque. , 1865 .

[92]  Alessandro Panconesi,et al.  Nearly optimal distributed edge coloring in O (log log n ) rounds , 1997 .

[93]  Jim Lawrence Covering the vertex set of a graph with subgraphs of smaller degree , 1978, Discret. Math..

[94]  N. Tomizawa,et al.  On some techniques useful for solution of transportation network problems , 1971, Networks.

[95]  Bruce A. Reed The list colouring constants , 1999, J. Graph Theory.

[96]  Andrew V. Goldberg,et al.  Scaling algorithms for the shortest paths problem , 1995, SODA '93.

[97]  Seth Pettie,et al.  Sensitivity Analysis of Minimum Spanning Trees in Sub-Inverse-Ackermann Time , 2005, J. Graph Algorithms Appl..

[98]  W. T. Tutte On the Problem of Decomposing a Graph into n Connected Factors , 1961 .

[99]  Toshihide Ibaraki,et al.  Computing Edge-Connectivity in Multigraphs and Capacitated Graphs , 1992, SIAM J. Discret. Math..

[100]  Bruce A. Reed,et al.  Asymptotically the List Colouring Constants Are 1 , 2002, J. Comb. Theory, Ser. B.

[101]  Mohammad Shoaib Jamall A Coloring Algorithm for Triangle-Free Graphs , 2011 .

[102]  Bruce A. Reed,et al.  Further algorithmic aspects of the local lemma , 1998, STOC '98.

[103]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[104]  David R. Karger,et al.  Random Sampling in Cut, Flow, and Network Design Problems , 1999, Math. Oper. Res..

[105]  Harold N. Gabow A matroid approach to finding edge connectivity and packing arborescences , 1991, STOC '91.

[106]  Sanjeev Arora,et al.  The Multiplicative Weights Update Method: a Meta-Algorithm and Applications , 2012, Theory Comput..

[107]  R. L. Brooks On Colouring the Nodes of a Network , 1941 .

[108]  Ramakrishna Thurimella Sub-Linear Distributed Algorithms for Sparse Certificates and Biconnected Components , 1997, J. Algorithms.

[109]  Harold N. Gabow,et al.  Data structures for weighted matching and nearest common ancestors with linking , 1990, SODA '90.

[110]  David G. Harris Lopsidependency in the Moser-Tardos Framework , 2015, SODA.

[111]  John von Neumann,et al.  1. A Certain Zero-sum Two-person Game Equivalent to the Optimal Assignment Problem , 1953 .

[112]  Piotr Sankowski,et al.  Maximum matchings via Gaussian elimination , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[113]  Mechthild Stoer,et al.  A simple min-cut algorithm , 1997, JACM.

[114]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.

[115]  Piotr Sankowski,et al.  Algorithmic Applications of Baur-Strassen's Theorem: Shortest Cycles, Diameter and Matchings , 2012, FOCS.

[116]  Mohammad Shoaib Jamall A Brooks' Theorem for Triangle-Free Graphs , 2011, ArXiv.

[117]  Rajeev Motwani,et al.  Clique partitions, graph compression and speeding-up algorithms , 1991, STOC '91.

[118]  E. Bonabeau,et al.  Quantitative study of the fixed threshold model for the regulation of division of labour in insect societies , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[119]  Noga Alon,et al.  A Fast and Simple Randomized Parallel Algorithm for the Maximal Independent Set Problem , 1985, J. Algorithms.

[120]  David R. Karger,et al.  Minimum cuts in near-linear time , 1998, JACM.

[121]  Shay Kutten,et al.  Fast Distributed Construction of Small k-Dominating Sets and Applications , 1998, J. Algorithms.

[122]  Noga Alon,et al.  A parallel algorithmic version of the local lemma , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[123]  Ronitt Rubinfeld,et al.  Fast Local Computation Algorithms , 2011, ICS.

[124]  Van H. Vu,et al.  A General Upper Bound on the List Chromatic Number of Locally Sparse Graphs , 2002, Combinatorics, Probability and Computing.

[125]  Bruce A. Reed,et al.  Colouring a graph frugally , 1997, Comb..

[126]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[127]  L. Kantorovich On the Translocation of Masses , 2006 .

[128]  Roger Wattenhofer,et al.  On the complexity of distributed graph coloring , 2006, PODC '06.

[129]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[130]  Mario Szegedy,et al.  Moser and tardos meet Lovász , 2011, STOC.

[131]  Jack Edmonds,et al.  Matching, Euler tours and the Chinese postman , 1973, Math. Program..

[132]  B. Goodwin,et al.  A Parallel Distributed Model of the Behaviour of Ant Colonies , 1992 .

[133]  Michael Elkin,et al.  Distributed approximation: a survey , 2004, SIGA.

[134]  Nancy A. Lynch,et al.  Task Allocation in Ant Colonies , 2014, DISC.

[135]  Aravind Srinivasan,et al.  New Constructive Aspects of the Lovasz Local Lemma , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[136]  Robin A. Moser Derandomizing the Lovasz Local Lemma more effectively , 2008, ArXiv.

[137]  Béla Bollobás Chromatic number, girth and maximal degree , 1978, Discret. Math..

[138]  Roger Wattenhofer,et al.  Lower and Upper Bounds for Distributed Packing and Covering , 2004 .

[139]  Philip N. Klein,et al.  A randomized linear-time algorithm for finding minimum spanning trees , 1994, STOC '94.

[140]  Andrew V. Goldberg,et al.  Beyond the flow decomposition barrier , 1998, JACM.

[141]  Mikkel Thorup,et al.  Undirected single-source shortest paths with positive integer weights in linear time , 1999, JACM.

[142]  Nicos Christofides Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem , 1976, Operations Research Forum.

[143]  Penny Haxell,et al.  A Note on Vertex List Colouring , 2001, Combinatorics, Probability and Computing.

[144]  Alessandro Panconesi,et al.  Near-Optimal, Distributed Edge Colouring via the Nibble Method , 1996 .

[145]  Seth Pettie,et al.  A simple reduction from maximum weight matching to maximum cardinality matching , 2012, Inf. Process. Lett..

[146]  Donald B. Johnson,et al.  Efficient Algorithms for Shortest Paths in Sparse Networks , 1977, J. ACM.

[147]  Hsin-Hao Su,et al.  Distributed algorithms for the Lovász local lemma and graph coloring , 2014, PODC '14.

[148]  Gábor Tardos,et al.  A constructive proof of the general lovász local lemma , 2009, JACM.

[149]  Leonid Barenboim,et al.  Distributed Graph Coloring: Fundamentals and Recent Developments , 2013, Distributed Graph Coloring: Fundamentals and Recent Developments.

[150]  Andrew V. Goldberg,et al.  Maximum skew-symmetric flows and matchings , 2004, Math. Program..

[151]  Alexandr V. Kostochka,et al.  On an upper bound of a graph's chromatic number, depending on the graph's degree and density , 1977, J. Comb. Theory B.

[152]  Rezaul Alam Chowdhury,et al.  Equivalence Between Priority Queues and Sorting , 2008, Encyclopedia of Algorithms.

[153]  Bruce A. Reed,et al.  Asymptotically optimal frugal colouring , 2010, J. Comb. Theory, Ser. B.

[154]  Hsin-Hao Su,et al.  Distributed coloring algorithms for triangle-free graphs , 2015, Inf. Comput..

[155]  Telikepalli Kavitha,et al.  Efficient algorithms for maximum weight matchings in general graphs with small edge weights , 2012, SODA.

[156]  Roger Wattenhofer,et al.  A log-star distributed maximal independent set algorithm for growth-bounded graphs , 2008, PODC '08.

[157]  Mohammad Shoaib Jamall Coloring triangle-free graphs and network games , 2011 .

[158]  Tommy R. Jensen,et al.  Graph Coloring Problems , 1994 .