Analysis and Design of High-Order QAM Direct-Modulation Transmitter for High-Speed Point-to-Point mm-Wave Wireless Links

A novel high-speed wireless transmitter (TX) architecture is presented that directly transforms incoming data bits into high-order <inline-formula> <tex-math notation="LaTeX">$4^{M}$ </tex-math></inline-formula>-quadrature amplitude modulation (QAM) constellation by adding multiple quadrature phase shift keying (QPSK) signals with appropriate amplitude ratios. The costly high-speed digital-to-analog converters (DACs) in conventional TXs are thus completely avoided, resulting in a highly integrated solution amenable to ultra-high speeds and operating frequencies. Design tradeoffs are analyzed in detail. Based on this article, a TX prototype at 115-GHz carrier frequency implementing the 16QAM direct-modulation scheme is fabricated in a 180-nm SiGe BiCMOS process (<inline-formula> <tex-math notation="LaTeX">$f_{\text {MAX}} = 270$ </tex-math></inline-formula> GHz). Wireless testing at a 20-cm distance with 25-dBi horn antennas on both transmitting and receiving side measures 20-Gb/s data rate with an error vector magnitude (EVM) of −15.8 dB and modulated output power of +1 dBm. The TX consumes 520 mW of power and occupies 3.17 mm<sup>2</sup> of active area.

[1]  K. Bult,et al.  A 10-b, 500-MSample/s CMOS DAC in 0.6 mm2 , 1998, IEEE J. Solid State Circuits.

[2]  Kenichi Okada,et al.  A Low-Power Low-Noise mm-Wave Subsampling PLL Using Dual-Step-Mixing ILFD and Tail-Coupling Quadrature Injection-Locked Oscillator for IEEE 802.11ad , 2016, IEEE Journal of Solid-State Circuits.

[3]  Kondo Satoshi,et al.  A 128-QAM 60GHz CMOS Transceiver for IEEE802.11ay with Calibration of LO Feedthrough and I/Q Imbalance , 2017 .

[4]  Behzad Razavi,et al.  The Current-Steering DAC [A Circuit for All Seasons] , 2018, IEEE Solid-State Circuits Magazine.

[5]  Ehsan Afshari,et al.  A High-Speed Efficient 220-GHz Spatial-Orthogonal ASK Transmitter in 130-nm SiGe BiCMOS , 2017, IEEE Journal of Solid-State Circuits.

[6]  B. Heinemann,et al.  Towards 100 Gbps: A Fully Electronic 90 Gbps One Meter Wireless Link at 230 GHz , 2018, 2018 48th European Microwave Conference (EuMC).

[7]  Munkyo Seo,et al.  InP HBT Technologies for THz Integrated Circuits , 2017, Proceedings of the IEEE.

[8]  R. Adams,et al.  A 3V CMOS 400mW 14b 1.4GS/s DAC for multi-carrier applications , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[9]  Georges Gielen,et al.  A 14-bit intrinsic accuracy Q2 random walk CMOS DAC , 1999, IEEE J. Solid State Circuits.

[10]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[11]  Apostolos Georgiadis,et al.  Gain, phase imbalance, and phase noise effects on error vector magnitude , 2004, IEEE Transactions on Vehicular Technology.

[12]  Jun-Fa Mao,et al.  Balanced-to-Balanced Gysel Power Divider With Bandpass Filtering Response , 2013, IEEE Transactions on Microwave Theory and Techniques.

[13]  F. Ellinger,et al.  A 245 GHz ASK modulator and demodulator with 40 Gbits/sec data rate in 0.13 μm SiGe BiCMOS technology , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[14]  Dan Kuylenstierna,et al.  Calculation of the Performance of Communication Systems From Measured Oscillator Phase Noise , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[15]  Ali M. Niknejad,et al.  A W-Band Low-Noise PLL With a Fundamental VCO in SiGe for Millimeter-Wave Applications , 2014, IEEE Transactions on Microwave Theory and Techniques.

[16]  Kenichi Okada,et al.  A 120Gb/s 16QAM CMOS millimeter-wave wireless transceiver , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[17]  Takashi Mizuochi,et al.  Forward error correction for 100 G transport networks , 2010, IEEE Communications Magazine.

[18]  Kenichi Okada,et al.  300-GHz. 100-Gb/s InP-HEMT Wireless Transceiver Using a 300-GHz Fundamental Mixer , 2018, 2018 IEEE/MTT-S International Microwave Symposium - IMS.

[19]  Arnulf Leuther,et al.  Towards MMIC-Based 300GHz Indoor Wireless Communication Systems , 2015, IEICE Trans. Electron..

[20]  Herbert Zirath,et al.  A $D$-Band 48-Gbit/s 64-QAM/QPSK Direct-Conversion I/Q Transceiver Chipset , 2016, IEEE Transactions on Microwave Theory and Techniques.

[21]  Payam Heydari,et al.  A 115–135-GHz 8PSK Receiver Using Multi-Phase RF-Correlation-Based Direct-Demodulation Method , 2019, IEEE Journal of Solid-State Circuits.

[22]  Gil Engel,et al.  A 14b 3/6GHz current-steering RF DAC in 0.18μm CMOS with 66dB ACLR at 2.9GHz , 2012, 2012 IEEE International Solid-State Circuits Conference.

[23]  Michel Steyaert,et al.  A 12-bit intrinsic accuracy high-speed CMOS DAC , 1998, IEEE J. Solid State Circuits.

[24]  Gabriel M. Rebeiz,et al.  ${W}$ -Band Direct-Modulation >20-Gb/s Transmit and Receive Building Blocks in 32-nm SOI CMOS , 2017, IEEE Journal of Solid-State Circuits.

[25]  Andreia Cathelin,et al.  A Single-Channel RF-to-Bits 36Gbps 8PSK RX with Direct Demodulation in RF Domain , 2019, 2019 IEEE Custom Integrated Circuits Conference (CICC).

[26]  Payam Heydari,et al.  Analysis and Design of a Wideband, Balun-Based, Differential Power Splitter at mm-Wave , 2018, IEEE Transactions on Circuits and Systems II: Express Briefs.

[27]  Corrado Carta,et al.  A Low-Power SiGe BiCMOS 190-GHz Transceiver Chipset With Demonstrated Data Rates up to 50 Gbit/s Using On-Chip Antennas , 2017, IEEE Transactions on Microwave Theory and Techniques.

[28]  N. Kukutsu,et al.  120-GHz-band 20-Gbit/s transmitter and receiver MMICs using quadrature phase shift keying , 2012, 2012 7th European Microwave Integrated Circuit Conference.

[29]  Kosuke Katayama,et al.  A 32Gbit/s 16QAM CMOS receiver in 300GHz band , 2017, 2017 IEEE MTT-S International Microwave Symposium (IMS).

[30]  Yu Lin,et al.  A 12 bit 2.9 GS/s DAC with IM3 <-60 dBc beyond 1 GHz in 65 nm CMOS , 2009 .

[31]  C. Wipf,et al.  SiGe HBT with fx/fmax of 505 GHz/720 GHz , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[32]  Kenichi Okada,et al.  3 A 64-QAM 60 GHz CMOS Transceiver with 4-Channel Bonding , 2013 .

[33]  Jason Cong,et al.  A 20Gb/s 79.5mW 127GHz CMOS transceiver with digitally pre-distorted PAM-4 modulation for contactless communications , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[34]  Hiroyuki Takahashi,et al.  120-GHz-Band Fully Integrated Wireless Link Using QSPK for Realtime 10-Gbit/s Transmission , 2013, IEEE Transactions on Microwave Theory and Techniques.

[35]  Duixian Liu,et al.  A Fully-Integrated 16-Element Phased-Array Receiver in SiGe BiCMOS for 60-GHz Communications , 2010, IEEE Journal of Solid-State Circuits.

[36]  Masao Nakaya,et al.  An 80-MHz 8-bit CMOS D/A converter , 1986 .

[37]  G. Van der Plas,et al.  A 12 bit 200 MHz low glitch CMOS D/A converter , 1998, Proceedings of the IEEE 1998 Custom Integrated Circuits Conference (Cat. No.98CH36143).

[38]  D. Adler,et al.  Broadband switched-bit phase shifter using all-pass networks , 1991, 1991 IEEE MTT-S International Microwave Symposium Digest.

[39]  Ingmar Kallfass,et al.  Performance Estimation for Broadband Multi-Gigabit Millimeter- and Sub-Millimeter-Wave Wireless Communication Links , 2015, IEEE Transactions on Microwave Theory and Techniques.

[40]  Marinette Besson,et al.  A 56GS/S 6b DAC in 65nm CMOS with 256×6b memory , 2011, 2011 IEEE International Solid-State Circuits Conference.

[41]  Axel Tessmann,et al.  64 Gbit/s Transmission over 850 m Fixed Wireless Link at 240 GHz Carrier Frequency , 2015 .

[42]  Kenichi Okada,et al.  64-QAM 60-GHz CMOS Transceivers for IEEE 802.11ad/ay , 2017, IEEE Journal of Solid-State Circuits.

[43]  Ali M. Niknejad,et al.  A 240 GHz Fully Integrated Wideband QPSK Transmitter in 65 nm CMOS , 2015, IEEE Journal of Solid-State Circuits.

[44]  A. Maeda,et al.  A 10-bit 70 MS/s CMOS D/A converter , 1991, Digest of Technical Papers., 1990 Symposium on VLSI Circuits.

[45]  Herbert Zirath,et al.  Influence of White LO Noise on Wideband Communication , 2018, IEEE Transactions on Microwave Theory and Techniques.

[46]  Xin Xu,et al.  A Compact Balanced-to-Balanced Filtering Gysel Power Divider Using $\lambda _{g}$ /2 Resonators and Short-Stub-Loaded Resonator , 2017, IEEE Microwave and Wireless Components Letters.

[47]  Jun-Fa Mao,et al.  A Balanced-to-Balanced Power Divider With Arbitrary Power Division , 2013, IEEE Transactions on Microwave Theory and Techniques.

[48]  Flyways To DeCongest Data Center Networks , 2009 .

[49]  Ho-Jin Song,et al.  50-Gb/s Direct Conversion QPSK Modulator and Demodulator MMICs for Terahertz Communications at 300 GHz , 2014, IEEE Transactions on Microwave Theory and Techniques.

[50]  Ming Zhang,et al.  Understanding data center traffic characteristics , 2010, CCRV.

[51]  M.J.M. Pelgrom,et al.  Matching properties of MOS transistors , 1989 .

[52]  W. Sansen,et al.  A 10-bit 1-GSample/s Nyquist current-steering CMOS D/A converter , 2001, Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (Cat. No.00CH37044).

[53]  Janusz Grzyb,et al.  A Fully Integrated 240-GHz Direct-Conversion Quadrature Transmitter and Receiver Chipset in SiGe Technology , 2016, IEEE Transactions on Microwave Theory and Techniques.

[54]  T. Schneider,et al.  All Active MMIC-Based Wireless Communication at 220 GHz , 2011, IEEE Transactions on Terahertz Science and Technology.

[55]  John G. Proakis,et al.  Digital Communications , 1983 .

[56]  B. Heinemann,et al.  A 16-QAM 100-Gb/s 1-M Wireless Link With an EVM of 17% at 230 GHz in an SiGe Technology , 2019, IEEE Microwave and Wireless Components Letters.

[57]  Michael M. Green,et al.  An 80 mW 40 Gb/s 7-Tap T/2-Spaced Feed-Forward Equalizer in 65 nm CMOS , 2010, IEEE Journal of Solid-State Circuits.

[58]  Kosuke Katayama,et al.  A 300 GHz CMOS Transmitter With 32-QAM 17.5 Gb/s/ch Capability Over Six Channels , 2016, IEEE Journal of Solid-State Circuits.

[59]  Payam Heydari Neutralization Techniques for High-Frequency Amplifiers: An Overview , 2017, IEEE Solid-State Circuits Magazine.

[60]  Gabriel M. Rebeiz,et al.  A ${D}$ -Band Digital Transmitter with 64-QAM and OFDM Free-Space Constellation Formation , 2018, IEEE Journal of Solid-State Circuits.

[61]  Paramvir Bahl,et al.  Flyways To De-Congest Data Center Networks , 2009, HotNets.

[62]  N. Sarmah,et al.  A 240 GHz high-speed transmission link with highly-integrated transmitter and receiver modules in SiGe HBT technology , 2017, 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz).

[63]  A. Amirkhany,et al.  A 12-GS/s Phase-Calibrated CMOS Digital-to-Analog Converter for Backplane Communications , 2008, IEEE Journal of Solid-State Circuits.

[64]  B. Heinemann,et al.  Performance Evaluation of a 32-QAM 1-Meter Wireless Link Operating at 220–260 GHz with a Data-Rate of 90 Gbps , 2018, 2018 Asia-Pacific Microwave Conference (APMC).

[65]  Muhammad Ali Imran,et al.  5G Backhaul Challenges and Emerging Research Directions: A Survey , 2016, IEEE Access.

[66]  Zheng Wang,et al.  A CMOS 210-GHz Fundamental Transceiver With OOK Modulation , 2014, IEEE Journal of Solid-State Circuits.

[67]  Sungkyung Park,et al.  A digital-to-analog converter based on differential-quad switching , 2002, IEEE J. Solid State Circuits.

[68]  Michiel Steyaert,et al.  An Accurate Statistical Yield Model for CMOS Current-Steering D/A Converters , 2001 .

[69]  Payam Heydari,et al.  A 100-120GHz 20Gbps Bits-to-RF 16QAM Transmitter Using 1-bit Digital-to-Analog Interface , 2019, 2019 IEEE Custom Integrated Circuits Conference (CICC).